
Robert Brajcich 
Damon George 
De Palma 
CPSC 427: Artificial Intelligence 

Final Project - Othello AI 
 
Overview 
In our final project we implemented the alpha-beta pruning algorithm, along with a complex 
heuristic to determine the value of different board states. The final demonstration uses a depth 
limit of 7 in order to balance timing requirements with the highest depth limit achievable. The 
alpha-beta pruning code can be seen in the file OthelloAI.java, in the function 
alphaBetaSearch. Furthermore, we implemented a heuristic value hashing algorithm so that the 
heuristic for any given board state only needed to be calculated once and could then be saved 
and recalled quickly using a generated hash of the associated board state. 
 
Heuristic 
The heuristic function we used involved a weighting of seven different characteristics about the 
state of the board which will be described in detail below. These were as follows: 
 

Heuristic Characteristic Associated Weight 

Count 0.05 

Actual Mobility 0.15 

Stable 0.3 

Unstable -0.1 

Semi-Stable 0.1 

Corners 0.3 

Potential Corners 0.2 

 
Each of these quantities is associated with a countable number of pieces that fulfill each 
characteristic. The count is determined for both the player and his opponent. The value of each 
characteristic (which will then be multiplied by the associated weight) is then computed as a 
weighted difference in the form: 
 

(# for player - # for opponent) / (# for player + # for opponent) 
 
The count characteristic is a simple count of the total number of pieces each player has on the 
board. The actual mobility is the number of legal moves available to each player in the given 
board state. The stable, semi-stable, and unstable characteristics calculate the number of 



pieces that can be categorized in each of these states. A stable piece is one that can never be 
flipped from its current value. A semi-stable piece is one that is not currently flippable but could 
possibly be flipped in the future. An unstable piece is one that could be flipped on the next move 
by the opposing player. The corners characteristic counts the number of pieces each player has 
in one of the corners of the board. Finally, the potential corners characteristic counts the number 
of corners that each player could take on their next move. 
 
One final note is that for a board state determined to be a leaf node, the heuristic is instead 
calculated as (player score - opponent score) * 1000 in order to ensure a winning or losing 
game state has a heuristic of very high magnitude compared with other heuristic assessments. 
 
Alpha-Beta Example 
The example on the next page uses actual board states and heuristic values generated while 
running our program, but uses a depth limit of only 2 in order to demonstrate the process 
without overcomplicating the algorithm. 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 


