
Jeb Kilfoyle and Damon George 
CPEN 435-01 

Association Rule Mining Final Project 
 
Intro: 

For this project, we wrote a Hadoop MapReduce program to mine the confidence of 
association rules. From previous homework, we already had access to a MapReduce program 
that counts the number of files that CIDs and CID pairs appear in, where CID refers to a 
Concept Identification. The purpose of this project was to build another MapReduce program to 
parse the output of that first job, and compute the confidence of all associations—an association 
rule being a X -> Y pair of CIDs. The confidence of such an association can be computed as 

, where the counts are provided by the first mapreduce job.onf (X , ) c Y =  Count(X)
Count(X ,Y )   

A Hadoop MapReduce program follows a strict structure. The input files are first mapped 
to key value pairs by the Mapper function. These key value pairs are then sorted, grouped, and 
sent to the Reducer function so that each Reducer receives all the values for a given key. The 
Reducer then processes those values and emits the final key value pairs to output files. In 
addition to writing this MapReduce association rule miner program, this project also entailed 
extensively tested on Amazon's EMR clusters, which are designed to run Hadoop programs. On 
the EMR clusters, the execution time of the program was tested for different cluster sizes, for 
different amounts of input files, and using both the Hadoop file system and the Amazon S3 file 
system.  
 
Implementation: 

Our Hadoop MapReduce implementation consisted of four parts: the first mapping 
function, the first reduce function, the second mapping function and the second reduce function. 

For the first mapping we created an empty arraylist, checked each CID from the file, and 
added it to the arraylist if it was not already present. Once completed we sorted this list of our 
CIDs. We then loop over all CID values and all CID pairs, represented as two comma separated 
values. Our first reduce function then goes through and counts the number of each CID and CID 
pair as a value associated with each key (CID or CID pair). 

 Our second map function takes the output of our first MapReduce, CID or CID pairs 
combined with the number of occurrences, and processes the key part of it. If the input is a pair 
of CIDs, then the map splits the pair and outputs twice, where the key is each CID. The value is 
the other CID comma separated with the Count. The map outputs twice to reflect the 
association in both direction . If the map's input is only a single CID, thenX , )⇒(X , ), Y , )( Y Y ( X  
the output is one key-value pair where the key is the CID and the value is a blank string comma 
separated with the Count. The second reducer function starts by initializing a count for keeping 
track of all for each  pair we see. We create an arraylist to store CID pairs so that weX X , )( Y  
may loop over them multiple times. We then loop through all possible our CID and CID pairs, 
adding pairs to the arraylist, and looking for a single CID. Once we find a single CID, we assign 
it as our current value, where current value holds a full pair .When the second CID in aX , )( Y  
pair is blank, the case of a single CID, we set our count equal to the second value of our input, 



which was the number of occurrences from the first MapReduce. We then stop our loop and 
start again, no longer adding to our arraylist. We finish by assigning current value to each new 
pair and then dividing by a double version of our count, to calculate . Once we haveonf (X , )c Y  
exhausted the list, we return to our arraylist in case any values were stored before we initialized 
our current value. 
 
Performance: 

To properly test this program, the two MapReduce jobs were timed for 4 different 
numbers of slave nodes and 4 different numbers of input files. The results of these executions 
are shown below in Table 1 in the form of <minutes:seconds:milliseconds>.  
 
Table 1: Scalability in terms of Slaves and Input 

 250 input files 500 input files 1000 input files 2000 input files 

2 Slaves Job 1 09:02:995 11:40:383 23:05:987 49:12:498 

Job 2 01:06:524 01:09:915 01:24:551 01:58:900 

4 Slaves Job 1 03:20:246 07:07:352 14:10:071 22:47:189 

Job 2 01:03:514 01:03:556 01:16:721 01:24:882 

8 Slaves Job 1 01:53:312 03:29:120 06:00:116 13:56:597 

Job 2 00:48:559 00:53:503 00:56:502 01:04:828 

16 Slaves Job 1 02:18:740 03:41:405 06:46:389 12:31:767 

Job 2 00:51:699 00:52:678 01:01:680 01:13:669 

 
Reading Table 1 from left to right, it is clear that doubling the number of input files 

approximately double the execution time of the first job, the CID counter from the previous 
homework. For example, with 4 slaves, the Job 1 execution time doubles from about 3 to 7 
minutes, then 7 to 14 minutes, and finally 14 to 23 minutes. This shows that the execution time 
of Job 1 increases approximately linearly with the increasing number of input files, with a few 
outliers such as the 250 input files running with 2 Slaves for 9 minutes, which is a little larger 
than expected.  

Reading Table 1 from top to bottom, it is also obvious that the execution times of Job 2 
approximately halve with doubling the number of slaves, which supports the expected inverse 
relationship. This shows that Job 2 scales both with increasing the input and increasing the 
number of slave nodes. However, increasing the number of slaves makes less difference as the 
cluster size increases. After a dozen slaves, the increase in performance is not necessarily 
worth the cost of the extra nodes.  

Job 1 is also clearly the limiting factor in the execution times of all the jobs in Table 1. 
Job 2 is much faster than Job 1, requiring around a minute to execute for almost every trial, and 



only increases by seconds for increasing the input. With 2 Slaves, the execution time only 
doubled from 250 input files to 2000. With 8 Slaves, the time only increased by about 15 
seconds from 250 to 2000 input files. This shows that the MapReduce program written for 
calculating confidence is very efficient and scalable for different numbers of input files. The 
execution of the second job also barely changes when reading the table from top to bottom. The 
total range of times is only about 1 second, which shows that increasing the size of the Hadoop 
cluster only makes a small impact on the execution of the second job.  

It is also interesting to note the trials using 16 Slaves, which are actually slightly longer 
than the 8 Slave trials. This is likely due to the fact that, because of technical difficulties, the 16 
Slave cluster used the AWS m4.large instances instead of the m4.xlarge instances that the rest 
of the trials used. This demonstrates how much of an impact the type of AWS instance affects 
the execution—16 m4.large instances were still slower than only 8 of the m4.xlarge instances.  

In addition to testing the program for different cluster and input sizes, the Association 
mining was also tested when logging to the AWS S3 storage. All the previous trials from Table 1 
used the Hadoop File System (HDFS), and those trials for the 8 Slave Cluster were copied 
below into Table 2 to compare against the execution times for an 8 Slave Cluster using S3 
storage.  
 
Table 2: Logging in HDFS vs AWS S3 

 250 input files 500 input files 1000 input files 2000 input files 

Using HDFS 
(8 Slaves) 

Job 1 01:53:312 03:29:120 06:00:116 13:56:597 

Job 2 00:48:559 00:53:503 00:56:502 01:04:828 

Using S3 
(8 Slaves) 

Job 1 05:16:086 11:01:340 17:14:433 36:21:558 

Job 2 01:26:357 01:28:429 01:43:232 01:52:519 

 
By inspecting Table 2, using the remote S3 storage for input and output of the Hadoop 

program more than doubled the execution times for Job 1. The trials for Job 2 also increased, 
but Job 2 is so fast that it hardly compares to the time that Job 1 takes. These trials 
demonstrate that running Hadoop programs on AWS EMR clusters with S3 storage greatly 
impacts performance, even though using S3 would be very useful with large datasets.  
 
Conclusion: 

Overall, programming the association rule mining Hadoop program was not overly 
difficult. The second job, which was coded for this project, efficiently scaled both with increasing 
input and cluster size. The first job, from the previous homework, was the limiting factor in 
execution time. This is likely because the first job must parse the large input files and also must 
sort the input in its map function in order to effectively count the CID pairs. It was also 
interesting to note the impact that using a different instance type has on execution time. 



Furthermore, the program ran significantly slower using the S3 storage, which likely has a big 
impact on companies who process massive datasets on AWS from S3 storage.  
 
Contributions: 

Both Damon and Jeb coded the assignment together. Damon tested the performance of 
the program and therefore wrote the performance, and intro, sections of the report. Jeb created 
the power point presentation and finished the rest of the report.  
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