Jeb Kilfoyle and Damon George
CPEN 435-01
Association Rule Mining Final Project

Intro:

For this project, we wrote a Hadoop MapReduce program to mine the confidence of
association rules. From previous homework, we already had access to a MapReduce program
that counts the number of files that CIDs and CID pairs appear in, where CID refers to a
Concept Identification. The purpose of this project was to build another MapReduce program to
parse the output of that first job, and compute the confidence of all associations—an association
rule being a X -> Y pair of CIDs. The confidence of such an association can be computed as

conf(X,Y) = % , where the counts are provided by the first mapreduce job.

A Hadoop MapReduce program follows a strict structure. The input files are first mapped
to key value pairs by the Mapper function. These key value pairs are then sorted, grouped, and
sent to the Reducer function so that each Reducer receives all the values for a given key. The
Reducer then processes those values and emits the final key value pairs to output files. In
addition to writing this MapReduce association rule miner program, this project also entailed
extensively tested on Amazon's EMR clusters, which are designed to run Hadoop programs. On
the EMR clusters, the execution time of the program was tested for different cluster sizes, for
different amounts of input files, and using both the Hadoop file system and the Amazon S3 file
system.

Implementation:

Our Hadoop MapReduce implementation consisted of four parts: the first mapping
function, the first reduce function, the second mapping function and the second reduce function.

For the first mapping we created an empty arraylist, checked each CID from the file, and
added it to the arraylist if it was not already present. Once completed we sorted this list of our
CIDs. We then loop over all CID values and all CID pairs, represented as two comma separated
values. Our first reduce function then goes through and counts the number of each CID and CID
pair as a value associated with each key (CID or CID pair).

Our second map function takes the output of our first MapReduce, CID or CID pairs
combined with the number of occurrences, and processes the key part of it. If the input is a pair
of CIDs, then the map splits the pair and outputs twice, where the key is each CID. The value is
the other CID comma separated with the Count. The map outputs twice to reflect the
association in both direction (X, Y)=(X,Y),(Y,X). If the map's input is only a single CID, then
the output is one key-value pair where the key is the CID and the value is a blank string comma
separated with the Count. The second reducer function starts by initializing a count for keeping
track of all X for each (X,Y) pair we see. We create an arraylist to store CID pairs so that we
may loop over them multiple times. We then loop through all possible our CID and CID pairs,
adding pairs to the arraylist, and looking for a single CID. Once we find a single CID, we assign
it as our current value, where current value holds a full pair (X, Y).When the second CID in a
pair is blank, the case of a single CID, we set our count equal to the second value of our input,



which was the number of occurrences from the first MapReduce. We then stop our loop and
start again, no longer adding to our arraylist. We finish by assigning current value to each new
pair and then dividing by a double version of our count, to calculate conf(X,Y). Once we have
exhausted the list, we return to our arraylist in case any values were stored before we initialized
our current value.

Performance:

To properly test this program, the two MapReduce jobs were timed for 4 different
numbers of slave nodes and 4 different numbers of input files. The results of these executions
are shown below in Table 1 in the form of <minutes:seconds:milliseconds>.

Table 1: Scalability in terms of Slaves and Input

250 input files 500 input files | 1000 input files | 2000 input files
2 Slaves Job 1 09:02:995 11:40:383 23:05:987 49:12:498
Job 2 01:06:524 01:09:915 01:24:551 01:58:900
4 Slaves Job 1 03:20:246 07:07:352 14:10:071 22:47:189
Job 2 01:03:514 01:03:556 01:16:721 01:24:882
8 Slaves Job 1 01:53:312 03:29:120 06:00:116 13:56:597
Job 2 00:48:559 00:53:503 00:56:502 01:04:828
16 Slaves Job 1 02:18:740 03:41:405 06:46:389 12:31:767
Job 2 00:51:699 00:52:678 01:01:680 01:13:669

Reading Table 1 from left to right, it is clear that doubling the number of input files
approximately double the execution time of the first job, the CID counter from the previous
homework. For example, with 4 slaves, the Job 1 execution time doubles from about 3 to 7
minutes, then 7 to 14 minutes, and finally 14 to 23 minutes. This shows that the execution time
of Job 1 increases approximately linearly with the increasing number of input files, with a few
outliers such as the 250 input files running with 2 Slaves for 9 minutes, which is a little larger
than expected.

Reading Table 1 from top to bottom, it is also obvious that the execution times of Job 2
approximately halve with doubling the number of slaves, which supports the expected inverse
relationship. This shows that Job 2 scales both with increasing the input and increasing the
number of slave nodes. However, increasing the number of slaves makes less difference as the
cluster size increases. After a dozen slaves, the increase in performance is not necessarily
worth the cost of the extra nodes.

Job 1 is also clearly the limiting factor in the execution times of all the jobs in Table 1.
Job 2 is much faster than Job 1, requiring around a minute to execute for almost every trial, and



only increases by seconds for increasing the input. With 2 Slaves, the execution time only
doubled from 250 input files to 2000. With 8 Slaves, the time only increased by about 15
seconds from 250 to 2000 input files. This shows that the MapReduce program written for
calculating confidence is very efficient and scalable for different numbers of input files. The
execution of the second job also barely changes when reading the table from top to bottom. The
total range of times is only about 1 second, which shows that increasing the size of the Hadoop
cluster only makes a small impact on the execution of the second job.

It is also interesting to note the trials using 16 Slaves, which are actually slightly longer
than the 8 Slave trials. This is likely due to the fact that, because of technical difficulties, the 16
Slave cluster used the AWS m4.large instances instead of the m4.xlarge instances that the rest
of the trials used. This demonstrates how much of an impact the type of AWS instance affects
the execution—16 m4.large instances were still slower than only 8 of the m4.xlarge instances.

In addition to testing the program for different cluster and input sizes, the Association
mining was also tested when logging to the AWS S3 storage. All the previous trials from Table 1
used the Hadoop File System (HDFS), and those trials for the 8 Slave Cluster were copied
below into Table 2 to compare against the execution times for an 8 Slave Cluster using S3
storage.

Table 2: Logging in HDFS vs AWS S3

250 input files | 500 input files | 1000 input files | 2000 input files
Using HDFS |Job 1 | 01:53:312 03:29:120 06:00:116 13:56:597
(8 Slaves)
Job 2 [00:48:559 00:53:503 00:56:502 01:04:828
Using S3 Job 1 |[05:16:086 11:01:340 17:14:433 36:21:558
(8 Slaves)
Job2 [01:26:357 01:28:429 01:43:232 01:52:519

By inspecting Table 2, using the remote S3 storage for input and output of the Hadoop
program more than doubled the execution times for Job 1. The trials for Job 2 also increased,
but Job 2 is so fast that it hardly compares to the time that Job 1 takes. These trials
demonstrate that running Hadoop programs on AWS EMR clusters with S3 storage greatly
impacts performance, even though using S3 would be very useful with large datasets.

Conclusion:

Overall, programming the association rule mining Hadoop program was not overly
difficult. The second job, which was coded for this project, efficiently scaled both with increasing
input and cluster size. The first job, from the previous homework, was the limiting factor in
execution time. This is likely because the first job must parse the large input files and also must
sort the input in its map function in order to effectively count the CID pairs. It was also
interesting to note the impact that using a different instance type has on execution time.



Furthermore, the program ran significantly slower using the S3 storage, which likely has a big
impact on companies who process massive datasets on AWS from S3 storage.

Contributions:

Both Damon and Jeb coded the assignment together. Damon tested the performance of
the program and therefore wrote the performance, and intro, sections of the report. Jeb created
the power point presentation and finished the rest of the report.

Screenshots:

Starting the Program

[hadoop@ip-172-31-9-231 AssociationRuleMiningl]$ ./runlob.sh
Deleted /user/AssociationRuleMining/outputl

Deleted /user/AssociationRuleMining/output2

18/04/29 22:39:14 INFO client.RMProxy: Connecting to ResourceManager at ip-172-31-9-231.ec2.internal/172.31.9.231:8032
18/04/29 22:39:15 INFO client.RMProxy: Connecting to ResourceManager at ip-172-31-9-231.ec2.internal/172.31.9.231:8832
18/04/29 22:39:15 WARN mapreduce.JobResourceUploader: Hadoop command-line option parsing not performed. Implement the Too
1 interface and execute your application with ToolRunner to remedy this.

18/04/29 22:39:15 INFO lzo.GPLNativeCodeloader: Loaded native gpl library

18/04/29 22:39:15 INFO lzo.lLzoCodec: Successfully loaded & initialized native-lzo library [hadoop-lzo rev 300391394352b87
4b85b529e870816a72c6f314al

18/04/29 22:39:16 INFO mapred.FileInputFormat: Total input files to process : 1000

18/04/29 22:39:16 INFO mapreduce.JobSubmitter: number of splits:1eee

18/04/29 22:39:16 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1525837914837_8805

18/04/29 22:39:16 INFO impl.YarnClientImpl: Submitted application application_1525037914837_0805

18/04/29 22:39:16 INFO mapreduce.Job: The url to track the job: http://ip-172-31-9-231.ec2.internal:20888/proxy/applicati
on_1525037914037_00e5/

18/04/2%9 22:39:16 INFO mapreduce.Job: Running job: job_1525037914037_0005

18/04/29 22:39:22 INFO mapreduce.Job: Job job_1525037914837_0005 running in uber mode : false

18/0@4/29 22:39:22 INFO mapreduce.Job: map 0% reduce 0%

18/04/29 22:39:41 INFO mapreduce.Job: map 1% reduce 0%

18/04/29 22:39:47 INFO mapreduce.Job: map 2% reduce 0%

18/04/29 22:39:48 INFO mapreduce.Job: map 3% reduce 0%

18/04/29 22:40:00 INFO mapreduce.Job: map 4% reduce 0%

18/04/29 22:40:10 INFO mapreduce.Job: map 5% reduce 0%

18/04/29 22:408:14 INFO mapreduce.Job: map 6% reduce 0%

Job 1 finishing and Job 2 starting

Job Step One took 850071 milliseconds

18/04/29 22:53:23 INFO client.RMProxy: Connecting to ResourceManager at ip-172-31-9-231.ec2.internal/172.31.9.231:8032
18/@4/29 22:53:23 INFO client.RMProxy: Connecting to ResourceManager at ip-172-31-9-231.ec2.internal/172.31.9.231:8032
18/04/29 22:53:23 WARN mapreduce.JobResourceUploader: Hadoop command-line option parsing not performed. Implement the Too
1 interface and execute your application with ToolRunner to remedy this.

18/04/29 22:53:23 INFO mapred.FileInputFormat: Total input files to process : 15

18/04/29 22:53:23 INFO mapreduce.JobSubmitter: number of splits:45

18/04/29 22:53:23 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1525037914837_0006

18/04/29 22:53:23 INFO impl.YarnClientImpl: Submitted application application_1525037914037_0006

18/04/29 22:53:23 INFO mapreduce.Job: The url to track the job: http://ip-172-31-9-231.ec2.internal:20888/proxy/applicati
on_1525037914837_0006/

18/04/29 22:53:23 INFO mapreduce.Job: Running job: job_15258379140837_0006

18/04/29 22:53:30 INFO mapreduce.Job: Job job_1525037914@037_0006 running in uber mode : false

18/04/29 22:53:30 INFO mapreduce.Job: map 0% reduce €%

18/04/29 22:53:52 INFO mapreduce.Job: map 4% reduce 0%

18/04/29 22:53:53 INFO mapreduce.Job: map 16% reduce 0%

AnIArIIAA AA.EAL.EE TAIFA oo S Tl ——— APAS ..o AN



Both Jobs are done

_—— — e e mm e m e mm e mm e mm e o

18/04/29 23:16:18 INFO mapreduce.Job: map 108% reduce 100%
18/04/29 23:16:19 INFO mapreduce.Job: Job job_1525040612457_0008 completed successfully
18/04/29 23:16:19 INFO mapreduce.Job: Counters: 52
File System Counters
FILE: Number of bytes read=422582059
FILE: Number of bytes written=868222940
FILE: Number of read operations=@
FILE: Number of large read operations=8@
FILE: Number of write operations=@
HDFS: Number of bytes read=10892408937
HDFS: Number of bytes written=1802628824
HDFS: Number of read operations=297
HDFS: Number of large read operations=0
HDFS: Number of write operations=62
Job Counters
Killed map tasks=1
Killed reduce tasks=1
Launched map tasks=68
Launched reduce tasks=32
Data-local map tasks=63
Rack-local map tasks=5
Total time spent by all maps in occupied slots (ms)=81521952
Total time spent by all reduces in occupied slots (ms)=37445088
Total time spent by all map tasks (ms)=1698374
Total time spent by all reduce tasks (ms)=390053
Total vcore-milliseconds taken by all map tasks=1698374
Total vcore-milliseconds taken by all reduce tasks=390053
Total megabyte-milliseconds taken by all map tasks=2608702464
Total megabyte-milliseconds taken by all reduce tasks=1198242816
Map-Reduce Framework
Map input records=55683241
Map output records=55683241
Map output bytes=1007089304
Map output materialized bytes=428927887
Input split bytes=10404
Combine input records=0
Combine output records=e
Reduce input groups=42343
Reduce shuffle bytes=428927887
Reduce input records=55683241
Reduce output records=55648898
Spilled Records=111366482
Shuffled Maps =2108
Failed Shuffles=0
Merged Map outputs=2108
GC time elapsed (ms)=33714

The Total Execution time

—y mm = e mmmi i —— e ——

Job Step Two took 76721 milliseconds
Both Jobs took 926792 milliseconds
[hadoop@ip-172-31-9-231 AssociationRuleMiningl$



Sample Output

[hadoop@ip-172-31-8-156 ~]$ /usr/bin/hadoop fs -cat /user/AssociationRuleMining/output2/part-00008
00800359,08220781 1.0

0000359,0039224
0000359,0000857
90800359,1708595
0000359,0043193
0000359,0332282
90800359,1705241
0000359,0050456
0000359,0205265
00800359,1704788
0000359,0000983
0000359,0450344
00800359,08005456
0000359,3486598
0000359,0007382
0000359,0449468
00800359,1513163
0000359,0007634
0000359,08369773
0000359,0011198
0000359,1524026
0000359,0178463
9000359,1880165
0000359,0050063
0000359,1883351
9000359,0031640
0000359,1979963
0000359,0020291
00800359,2986417
0000359,1283195
0000359,0006797
00800359,08017786
00800359,08567416
0000359,0552449
00800359,08526574
00800359,08442739
0000359,0439526

PRRPRPRPRPRPRPRPRPRPRPRPRPRPRPRRPRRPPEPRRPREPRPRRPRPRPRPRRPRREPRRLRPRPE
0000000



