
Superlative Learning in Semantic Goal Navigation

Damon George
georgdam@oregonstate.edu

Jacob Krantz
krantzja@oregonstate.edu

Joseph Valencia
valejose@oregonstate.edu

Abstract

Superlative reasoning, which requires identifying an in-
stance from a set with the highest or lowest degree of some
attribute, is often overlooked in the analysis of deep net-
works, despite the increased complexity of superlative tasks
as compared to non-superlative tasks. We attempt to de-
termine whether deep networks can learn superlative tasks
and whether the increased complexity results in decreased
performance. We first test a simple visual superlative task
by teaching a CNN to identify the longest lines or largest
polygons in an image. Our simple CNN learns this task
easily. We further extend the problem to semantic goal
navigation (SGN), where an agent must navigate an en-
vironment following language instructions. We extend the
gym-miniworld virtual environment to support language
grounding and superlative instructions, and train a Gated-
Attention network using PPO on both superlative and non-
superlative instructions. Unfortunately, results indicate that
our agent was unable to learn SGN in this environment,
eliminating our ability to analyze the performance of the
network on superlative tasks.

1. Introduction

Superlatives are used to describe something as having
the highest or lowest degree of some quality, and are an
essential aspect of language and question answering. A
simple superlative question could be ”Who is the tallest
basketball player?”. Although the occasional deep learn-
ing paper incorporates superlative reasoning tasks, such as
[1], no treatment has been given to distinguishing the per-
formance of deep networks between superlative and non-
superlative tasks in the visual and visual-linguistic domains.
Non-superlative reasoning in this case could be any task de-
fined without superlatives, such as ”Who is player number
43?”.

This paper specifically seeks to analyze the performance
of deep networks on superlative and non-superlative visual
tasks. We aim to determine whether deep networks can suc-
cessfully learn superlatives, and if so, whether superlative
tasks are more challenging than non-superlative tasks. Su-

perlative tasks have an inherently higher difficulty than non-
superlative tasks due to the need for the network to 1) iden-
tify specific instances in a set, 2) compare some attribute
amongst those instances, and 3) select the instance with ei-
ther the highest or lowest degree of the attribute in question.
We suspect that deep networks perform worse on superla-
tive tasks as compared to non-superlative tasks due to this
difficulty and the inability of convolutional neural networks
(CNN) to process precise absolute position information [9].

To answer these questions, we first analyze the perfor-
mance of a simple CNN architecture on basic superlative
tasks, such as identifying the tallest line or the largest poly-
gon. Testing with simple lines and polygons shows that
even a vanilla CNN has no difficulty in making predictions
about basic superlative qualities.

To increase the difficulty of the tasks, we expand the
problem to semantic goal navigation (SGN), in which an
agent learns to navigate an environment in response to tem-
plated language instructions [1]. One popular simulated
environment commonly used for this purpose is ViZDoom
[6] based on the video game Doom, in which a sample in-
struction for the agent could be “Go to the green torch”.
However, due to installation issues with VizDoom, in this
work we instead use the simpler gym-miniworld 3D sim-
ulator [2]. To analyze the performance of deep networks
on superlative tasks in this environment, we first implement
custom data generation and language grounding in the en-
vironment to allow us to train reinforcement agents with
instructions split between superlative and non-superlative
descriptors. Next, we implement our agent with a Gated-
Attention network trained using proximal policy optimiza-
tion [1, 12]. Finally, we train and test our agents using sepa-
rate splits of superlative and non-superlative instructions in
both easy and hard configurations of the environment. Due
to challenges in hyperparameter tuning, strong SGN results
in gym-miniworld were never achieved. Among our partial
results, we observe that our agent achieved higher accuracy
with non-superlative instructions than it did with superlative
instructions despite equal training exposure.

1

2. Related Work

As stated, superlatives have received little focus in com-
puter vision research, despite the focus they have received
in the language processing community. A treatment of su-
perlatives can be found in [10], in which the author de-
scribes the many computational challenges involved in an-
swering superlative questions. Due to these challenges, it
is possible that deep networks may perform poorly on su-
perlative tasks.

Furthermore, Liu et al. have shown a failure of CNNs to
translate between activated pixels in an image and their co-
ordinates in the image [9]. The authors solve this problem
by adding pixel coordinates as additional input channels
to their CNN. However, this failure of the non-augmented
CNN shows that deep networks may struggle with the po-
sitional instance identification and comparison that is re-
quired for answering superlative questions.

The Gated-Attention network paper from Chaplot et al.
is the most notable prior attempt at learning superlatives in
the visual domain [1]. The authors use deep reinforcement
learning to train an agent to perform semantic goal naviga-
tion in the ViZDoom environment. They provide the agent
with textual instructions containing specific objects, colors,
and occasionally superlatives. Their network achieves an
impressive 89% accuracy in medium difficulty and 83% ac-
curacy in hard difficulty settings. However, the authors do
not explicitly evaluate the network’s difference in perfor-
mance between the superlative and non-superlative tasks.
Further, without controlling object generation in episodes,
non-superlative reasoning can be used to solve superlative
instructions. Such an instance would be to navigate to the
tallest torch, but only one torch exists in the scene. In this
paper, we implement the same Gated-Attention network as
used by Chaplot et al. so we can compare the performance
of our implementation in gym-miniworld to their results.
Further work in multitask learning extends SGN approaches
to include embodied question answering (EQA) [13]. We
note that superlative reasoning in SGN may also be present
in natural language-based EQA despite not being present in
the existing EQA task definition [4]. This suggests that a
more focused treatment of superlatives may benefit vision
and language tasks in future research.

3. Learning Simple Visual Superlatives

We devise several toy problems as an initial test of our
hypothesis that CNNs struggle to compare the spatial qual-
ities of multiple objects. First, we generate a dataset of
black and white images containing four lines of varying
heights and train a simple CNN classifier to predict the
tallest line. The class labels i ∈ [0, 3] correspond to the
line at the ith position from left to right. Next, we gener-
ate a similar image dataset of circles and regular polygons

Dataset Image Dimension Accuracy Convergence
Lines (24× 24) 99.9 1

Shapes (224× 224) 95.0 5

Table 1: Results on toy datasets. Accuracy is on the vali-
dation set. Convergence refers to the number of epochs to
> 95% accuracy.

Figure 1: An example from each of our simple image
datasets. Tallest line (left). Largest ball (right).

(triangles, squares, pentagons, and hexagons). The shapes
vary in color and are placed against a black background. We
train the network to predict the shape with the largest radius.
The results on these two datasets are summarized in Table
1. The rapid convergence to high accuracy illustrates that
CNNs are capable of predicting superlatives in highly con-
strained domains. This success motivates our exploration of
the more complex task of semantic goal navigation.

4. Task Definition: SGN-MiniWorld

We develop a reinforcement learning environment called
sgn-miniworld on top of the gym-miniworld GitHub repos-
itory [8]. This package provides a default scene consisting
of a 3-dimensional simulated room, which we modify to ap-
proximate the original VizDoom environment from [1]. It
comes with pre-existing object types and logic for ensuring
that objects do not overlap within the scene. We constrain
the placement and attributes of these objects and ensure that
a given room configuration can be replicated repeatedly dur-
ing training and testing.

Every room configuration includes a text instruction for
the agent as the basis for the language grounding task. The
grammar for generating instructions is shown below. Note
that we have a total of 174 unique instructions, but each one
can be associated with multiple room configurations:

S→ go to the SUP COL OBJ
SUP→ closest | farthest | tallest | shortest | ε
COL→ red | green | blue | yellow | purple | gray | ε
OBJ→ ball | box | barrel | cone | object

2

(a) Easy

(b) Hard

Figure 2: Difficulty Settings

We establish two difficulty settings for sgn-miniworld:
(1) Easy, where each scene contains exactly four objects.
All objects sit along a single line at a fixed distance in the
room. When the instruction is based on a ’tallest’ or ’short-
est’ superlative, the object heights are drawn from a regular
grid on [0.5, 2] with a step-size of 0.25 in order to guarantee
a clear separation in heights. The agent spawns at the op-
posite side of the room facing the objects. (2) Hard, where
the environment generates 4-6 objects with random heights
in [0.5, 2] in random positions within the room. The agent
also spawns in a random position and orientation. Figure 2
shows example room configurations under both settings.

5. Methods
We develop a method for solving the sgn-miniworld task,

adding neural network components that will help the agent
successfully navigate its environment, particularly in re-
sponse to superlative instructions. Such an agent needs
spatial reasoning for observing the environment, temporal
reasoning for remembering objects it has seen (particularly
for the hard mode), and crucially, multi-modal reasoning to
ground a linguistic (possibly superlative) instruction in the
3D environment. These reasoning systems build from our
line and polygon visual experiments by introducing action
in a 3D space.

Figure 3: Network architecture that follows the same encod-
ing procedure as [1]. Note that our action and value decoder
is a GRU instead of an LSTM. At inference time we sample
from the action distribution D.

5.1. Architecture: Gated Attention

A natural network to use for the semantic goal navi-
gation task is the Gated-Attention network developed by
Chaplot et al.[1]. Since we are more concerned with the
task and superlative analysis than developing new architec-
tures in this work, we keep our version of this architecture
fixed throughout the experiments. We expect the Gated-
Attention network to be sufficient for sgn-miniworld be-
cause it achieves a high accuracy in the original SGN task.

The architecture itself is a straightforward multi-modal
system. The image I at timestep t is encoded as Vt =
f(It, θconv), where f performs three down-sampling con-
volutions. The instruction L is encoded using a GRU [3]:
It = g(L, θGRU) followed by a linear layer activated
with the sigmoid. The instruction encoding is expanded to
Mt(It) and then used to attend over the image encoding via
an element-wise multiplication: Ot = Vt �Mt(It) where
� is the Hadamard product. The result of this multi-modal
fusion is passed through a fully connected layer then a GRU
to maintain temporal memory: ht = GRU(ht−1, fc(Ot)).
This differs from the original architecture that uses an
LSTM [5]. Finally, this newly computed hidden state is
passed through two separate linear layers to produce a dis-
tribution over the action space and a value estimate. With
an image observation space of (224×224×3), our network,
which we also call the policy, has around 1.7M parameters
to optimize.

5.2. Training

We seek to find a set of parameters θ for our policy π
that minimize the difference between πθ and the optimal

3

π∗. To do so, we frame our environment as a Markov deci-
sion process (MDP) and apply proximal policy optimization
[12]. PPO is a policy gradient method, and further, an ac-
tor critic method. The gradient of our policy πθ is directly
optimized (the actor) as well as the gradient of the advan-
tage estimate function Aπθ (s, a) (the critic). A commonly
optimized actor-critic objective is:

LPG(θ) = Eπθ
[
log πθ(s, a)Â

πθ (s, a)
]
. (1)

Alternatively, the PPO objective restricts the size of the gra-
dient update by clipping the ratio of the current policy to the
old:

LCLIP (θ) = (2)
Eπθ [min (rt(θ)A

πθ , clip(rt(θ), 1− ε, 1 + ε)Aπθ)]

where

rt(θ) =
πθ(at|st)
πθold(at|st)

.

In this work, we apply the PPO update to the Gated-
Attention network described in Section 5.1 and optimize
using the Adam optimizer [7]. The core of our implemen-
tation comes from [8]. The advantage estimate is com-
puted using generalized advantage estimation (GAE) which
uses a λ-return with the state value function V πθ (st) [11].
The reward function R(s, a) is an important component of
the training regime. We define a reward that combines a
timestep penalty, a progress-to-goal reward, and a success
reward:

R(s, a) =A (3)
+B(distance(st−1)− distance(st))
+C ∗ 1(success)

where we set {A : −0.01, B : 1.0, C : 10.0} for a dense
reward setting and {A : −0.01, B : 0.0, C : 10.0} for a
sparse reward setting.

6. Experiments
To evaluate the performance of our agent in superla-

tive and non-superlative sgn-miniworld, we first trained the
Gated-Attention network separately in both easy and hard
modes of the environment. 3000 unique episodes were used
for training, generated randomly from the 174 instructions.
Each episode contained four objects, one of which was the
target object, and each episode ended when the agent ran
into any of the objects or reached the maximum number of
steps. We ensure that superlative reasoning is required in
each episode by placing multiple objects of the same type;
for instance, we place a minimum of two boxes when the
instruction includes “tallest box”. This is not a guarantee

in original SGN. For training, the instructions were split
evenly between superlative and non-superlative commands.
Both dense and sparse rewards were tested in various trials,
as well as various values of forward step size, to determine
the best training configuration of the network.

The trained networks were evaluated separately on 1000
random episodes of superlative instructions and 1000 ran-
dom episodes of non-superlative instructions. The network
parameters selected for testing were simply chosen as the
parameters resulting in the highest success rate during train-
ing, which was computed using a running window 100
episodes long.

6.1. Results

The test results of our network are shown in Table 2 for
both easy and hard difficulties. Unfortunately, it is clear that
our network was unable to successfully learn to navigate in
sgn-miniworld. Despite training the networks for multiple
days and in multiple configurations, the success rate never
reached above 30%. During training, success rates were
consistently below 20% on average with a very high vari-
ance between episode success windows. However, we can
still see in Table 2 that the success rate is indeed higher in
easy mode, as we expected. Furthermore, the success rate is
higher for non-superlative tasks in both modes of difficulty.
However, the high variance in success rate during training
means that there is little significance to the slight differences
in success between superlative and non-superlative tasks.
Table 2 also shows the test results in easy mode using sparse
rewards, in which the agent only receives a reward on suc-
cessful completion of an episode. The very low success rate
in this mode indicates that a sparse reward setting is ineffi-
cient if not unsuitable for this task.

Mode Steps Nav Error Success Rate
Easy-dense
Superlative 73.38 4.04 22.7

Non-Superlative 76.85 4.17 23.3
Hard-dense
Superlative 83.90 6.75 13.8

Non-Superlative 68.09 6.87 15.0
Easy-sparse
Superlative 78.18 7.41 6.5

Non-Superlative 75.54 7.69 7.0

Table 2: Comparison of results for superlative vs non-
superlative instructions. Navigation Error is in meters and
Success Rate is a percentage. The different modes refer to
the two levels of difficulty and two reward settings.

4

7. Discussion

In this work, we analyze the performance of deep net-
works on superlative and non-superlative tasks. We hypoth-
esize that the higher complexity of superlative reasoning
will result in poorer performance from deep networks as
compared to non-superlative reasoning. In our initial testing
of simple visual superlatives using lines and polygons, we
see that even a simple CNN classifier can learn superlatives
with almost perfect accuracy with only a few epochs. These
results show that neural networks can learn simple superla-
tive reasoning and suggests that our hypothesis could be
wrong.

Expanding superlative reasoning to a more complex set-
ting involving action language and vision, we consider
semantic goal navigation and implement a reinforcement
learning agent in the gym-miniworld environment, in the
process adding the necessary architecture to the simulator in
order to use templated language instructions. Despite train-
ing multiple agents in easy and hard modes with dense and
sparse rewards, we unfortunately never achieve meaning-
ful success in the SGN task. In all cases, higher accuracy
is achieved on the non-superlative tasks, which hints at a
successful confirmation of our hypothesis. However, suc-
cess rate on test data never reached above 25%, and despite
our attempts to produce meaningful analysis of our results,
the low accuracy and high variance of our trained networks
makes most analysis uninformative.

Clearly, there are many additional steps necessary to
complete this work and achieve meaningful results in com-
paring the performance of deep networks on superlative and
non-superlative tasks in the context of semantic goal navi-
gation. From initial testing of our network, we know that
our agent can learn to navigate the gym-miniworld envi-
ronment – it performs the baseline goal of finding a single
object without difficulty. However, it is possible that our
implementation of Gated-Attention for language grounding
is incorrect, or that the many hyper-parameters still require
extensive tuning to achieve success in training. Further ex-
tensive testing and tuning of our network is therefore still
quite necessary.

Another option for improving training is to use a pre-
trained ResNet for the CNN. Although Chaplot et. aldid
not require this step, it has the potential to greatly speed up
the initial training phase of the image encoder by giving the
model a head start in distinguishing shapes. The 2D poly-
gon dataset could also be incorporated as a pre-training task,
particularly with more complex formulations like a variable
amount of shapes and irregular shapes.

References
[1] D. S. Chaplot, K. M. Sathyendra, R. K. Pasumarthi, D. Ra-

jagopal, and R. Salakhutdinov. Gated-attention architec-

tures for task-oriented language grounding. In Thirty-Second
AAAI Conference on Artificial Intelligence, 2018.

[2] M. Chevalier-Boisvert. gym-miniworld environment for
openai gym. https://github.com/maximecb/
gym-miniworld, 2018.

[3] K. Cho, B. van Merriënboer, D. Bahdanau, and Y. Bengio.
On the properties of neural machine translation: Encoder–
decoder approaches. In Proceedings of SSST-8, Eighth Work-
shop on Syntax, Semantics and Structure in Statistical Trans-
lation, pages 103–111, 2014.

[4] A. Das, S. Datta, G. Gkioxari, S. Lee, D. Parikh, and D. Ba-
tra. Embodied question answering. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion Workshops, pages 2054–2063, 2018.

[5] S. Hochreiter and J. Schmidhuber. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

[6] M. Kempka, M. Wydmuch, G. Runc, J. Toczek, and
W. Jaśkowski. ViZDoom: A Doom-based AI research plat-
form for visual reinforcement learning. In IEEE Conference
on Computational Intelligence and Games, pages 341–348,
Santorini, Greece, Sep 2016. IEEE. The best paper award.

[7] D. P. Kingma and J. Ba. Adam: A method for stochastic
optimization. CoRR, abs/1412.6980, 2014.

[8] I. Kostrikov. Pytorch implementations of reinforce-
ment learning algorithms. https://github.com/
ikostrikov/pytorch-a2c-ppo-acktr, 2018.

[9] R. Liu, J. Lehman, P. Molino, F. P. Such, E. Frank,
A. Sergeev, and J. Yosinski. An intriguing failing of convo-
lutional neural networks and the coordconv solution, 2018.

[10] S. Scheible. Towards a computational treatment of superla-
tives. In Proceedings of the ACL 2007 Student Research
Workshop, pages 67–72, Prague, Czech Republic, June 2007.
Association for Computational Linguistics.

[11] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel.
High-dimensional continuous control using generalized ad-
vantage estimation. arXiv preprint arXiv:1506.02438, 2015.

[12] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov. Proximal policy optimization algorithms. arXiv
preprint arXiv:1707.06347, 2017.

[13] D. Singh Chaplot, L. Lee, R. Salakhutdinov, D. Parikh, and
D. Batra. Embodied multimodal multitask learning. arXiv
preprint arXiv:1902.01385, 2019.

5

https://github.com/maximecb/gym-miniworld
https://github.com/maximecb/gym-miniworld
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr

