Students: Arthur Lane, Damon George & **Robert Brajcich** Advisor: Tim Ecklund Liaison: Kamil Agi

Problem

Cyclist Safety in the Presence of Smart and Autonomous Vehicles

Solution

A Battery-Powered Helmet, with GPS and wireless Vehicle-to-Everything (V2X) communication, that warns the cyclist of potential collisions via haptic and audible alerts.

Requirements:

- GPS 🗸
- V2X 🗸
- Battery Power
- Traffic Simulator

Stretch Goals:

- Haptic Warnings
- Custom PCB ~
- Module Enclosure X

What is V2X?

Vehicle-To-Everything Communication

- 5G Wireless
- Basic Safety Messages (Cars)
- Personal Safety Messages (People)
- Shared Data: position, size, motion, route data

Smart Helmet: **Connecting Cyclists to Intelligent Vehicles**

ENSC 02 Self-Proposed Project

Printed Circuit Board (PCB) Design

Figure 2: The Prototype Smart Helmet

Full System PCB:

- 4 Layers
- 198 components
- 3rd Iteration

Figure 3: Full PCB Top Layer

Functionality:

- Power Supply
- Microcontroller
- Haptic Control

Free RTOS Tasks:

Traffic Simulator

Figure 8: The Traffic Simulator

Java Desktop Traffic Simulator using OpenGL Graphics

Connects via USB to transceiver relay to spoof vehicle data to the Smart Helmet. Allows the user to generate cars in collision scenarios around the cyclist. The bike and currently selected car can be driven using the keyboard, and the motion data for the two are shown as well.

Figure 4: Full PCB Bottom Layer

Audio Processing V2X Messages Bluetooth

Figure 5: 2nd PCB Revision with

Power and Haptics

Figure 9: The Traffic Simulator's Transceiver Relay

Collision Detection:

- •

- Buzzing frequency increases as threat approaches.
- Alternates among top 3 threats.

Ν	e
1. 2.	
3.	

School of Engineering & Applied Science

Results

New Product Material Cost:

Quantity	Cost
1	\$292.00
100	\$165.00
1000	\$122.00

Limitations:		
•	 Lack of Processing 	
	Power	
•	No Map Data	

Capabilities:

- Linear and Curving
- Trajectories
- 10 second lookahead

Audio Warnings:

Haptic Warnings:

• 6 directional vibration motors.

Project Budget:

Budget	Spent
\$5,000.00	\$2,600.00

ext Steps

- Authentic V2X radios.
- Full printed circuit board with custom helmet.
- Advanced inertial and proximity sensors for versatile collision warnings.
- Bluetooth app for personalization and visual threat feedback.

Qualcomm

9150 C-V2X