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Functional Description 

General Overview 
This lab is primarily intended to demonstrate the communication between an ethernet interface 
on each of two DE2-115 development boards, with a very basic interface to test the 
packet-sending functionality. The primary inputs for the system are the slide switches sw17 to 
sw0 and the pushbutton key3. The primary outputs are the 18 onboard red LEDs. The user can 
slide the 18 switches up or down in order to specify a pattern of LEDs, which is stored in on-chip 
memory. By then pressing key3, the pattern is read from memory, encapsulated in an ethernet 
packet and sent to the other board, where it gets displayed on that board’s red LEDs. Once a 
pattern has been sent to the other board, it will continue to show it until another pattern is sent 
to it. This implementation is loaded onto both boards such that a two-way communication allows 
each board to control the LEDs on the other one. We were able to make this lab function fully as 
intended. 
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Top Level Block Diagram 

 
The Clock Scaler block converts the onboard 50 MHz clock to a 1 MHz clock. 
 
The Debouncer block is responsible for debouncing the signal of key0 in order to eliminate edge 
jitter. 
 
The 2PortRam block was generated using the on-chip memory IP in Quartus. The ethernet 
packet data is stored in memory and updated each time the slide switches are changed. The 
memory is then read when key0 is pressed and the ethernet packet is written. Incoming LED 
pattern data is also written to memory before being output to the LED pins. 
 
The Receiver block handles incoming ethernet packets. It reads from the small ethernet MAC IP 
block when a ready signal informs it of new data. The new LED data is then written to the RAM 
block. 
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The Sender block handles outgoing ethernet packets. When signalled by the main block 
(prompted by key0), it reads the packet data from memory and sends it to the small ethernet 
MAC IP block to be output. 
 
The Small Ethernet MAC IP block is generated by Quartus to interface with the onboard 
ethernet physical layer chip. 
 
The Ethernet PHY Chip is the physical chip on the DE2-115 board that handles the layer 1 
ethernet protocol elements. We only have to provide it the clock it needs and use the MAC IP 
block to interact with it. There is also some initialization done on it through the Small Ethernet 
MAC block. 
 
The Main block is responsible for handling the inputs and outputs of the system as well as 
maintaining its logic flow. It begins by performing the necessary initialization for the Small MAC 
and PHY chip. It provides the slide switch signals to the sender block and informs it to output a 
packet when key0 is pressed. It also accepts the most up-to-date incoming LED data from the 
receiver block and outputs it to the physical pins to turn them on. 

Lower Level Block Descriptions 
 
Clock Scaler 
The clock scaler module is made up of a simple counter that counts (on edges of clk_in) to a 
scale value, and toggles clk_out to generate a slower clock signal. 
 
Debouncer 
The debouncer module waits for a change in the debounce_in signal, and begins counting clk 
cycles until it either detects another change, in which case the counter resets, or until it hits 20 
milliseconds of a consistent input, in which case the input value propagates to debounce_out. 
 
2PortRam 
The 2PortRam module provides the on-chip memory interface for the design, and is generated 
using the wizard in Quartus. The RAM holds 16 words, and each is 32 bits long. The first 8 
words are used to hold the packet data that will be output to the ethernet block when a send 
operation is triggered. The following 8 words are used to hold incoming packet data, including 
the LED data that was sent from the other board. Port A is used by the receiver module, which 
reads and writes data into the second half of the RAM. Port B is used by the sender module, 
which writes the slide switch data into the first half of RAM, and transfers the packet data from 
the first 8 words of RAM to the ethernet module when the send flag is asserted. The RAM is 
constructed with data in and out registers, a write enable flag, and an address input for each of 
the two ports. The clk signal is shared between both ports and is synced to the 1 MHz clock that 
drives all the modules. 
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Receiver 
The Receiver module has two primary responsibilities. It reads and outputs the most up-to-date 
LED data from RAM back to the main module to be displayed, and it receives incoming packets 
from the MAC IP module and writes the relevant data to RAM. It accomplishes this using a state 
machine that keeps track of whether it is receiving data or just idling while outputting the LED 
data to the main module. It is driven using the 1 MHz clock. The rx_sigs connecting from the 
receiver to the MAC IP module include a flag that tells the receiver when a message is ready, 
and the data bus and corresponding signals that allow the receiver to read the data from the 
ethernet module’s incoming FIFO including a write enable flag and rx_ready flag. When a 
message is ready from the ethernet module, it reads the whole packet into memory. It then 
waits to see if the rx_err flag is set at the end of the message. If there is no error, it copies the 
LED data word from the packet to another location in memory, and returns to its idle state in 
which it outputs the updated LED data from memory to main. 
 
Sender 
The sender module also has two responsibilities. The first takes place during its idle state. It 
simply connects the incoming slide switch data from main straight to the RAM data input port, 
and holds the RAM write enable high to constantly write the most up-to-date switch data. This 
location in RAM is surrounded by the rest of the packet header information that must be sent as 
well. The other responsibility is to send the switch data to the ethernet module, which begins 
when the send flag from main is asserted (which occurs when key3 is pressed). The sender 
enters a wait state that does nothing until the ethernet fifo is ready for data, while placing the 
first word of the packet from memory on the tx data bus. When ready, the module moves to the 
send state, which asserts the write signal for the ethernet module and the sop or eop flags if 
necessary. The state machine then returns to the wait state, and continues back and forth 
between these states until every word of the packet has been written to the ethernet module. It 
then returns to the idle state to continue reading the slide switch data into memory. 
 
Small Ethernet MAC IP 
This module was generated using Intel’s IP included in Quartus. We selected the Small MAC 
10/100 Mbps variant because of the simplicity of configuring it for our needs. We supplied it with 
a 1 MHz clock for the control and FIFO tx/rx ports. It contains various flags and data ports for 
sending and receiving from the FIFO. It accomplishes some of the layer 2 tasks required for 
ethernet, including CRC calculation and verification. It also implements the MII interface 
required to send the data and receive it through the PHY chip. 
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Main 
The main module is responsible for the initialization of the ethernet module and PHY chip, and 
then to send the switch data to the sender module and signal that module to send out the data 
when key3 is pressed. Main first starts by performing a hardware reset on the PHY chip, which 
includes delays to make sure the chip is allowed sufficient time to power on. Next, the MAC is 
reset as well, also with a delay. Next, the main configuration register of the MAC is read in order 
to enable the tx and rx interfaces. Then the Main state machine waits until the MAC is properly 
configured. Next, Main writes to the PHY chip's registers. This is accomplished by writing to a 
portion of the MAC's register address space which corresponds to the address space of the 
PHY chip. In turn, the MAC module performs the register reads and writes over the MDIO 
connection to the PHY chip. Using this method, this module writes configurations to registers 
20, 16, and 0 of the PHY chip. This is done in order to turn on the physical transceiver, enable 
automatic crossover for the ethernet cables, and set the speed to 100 Mbps. Then this module 
performs a software reset on the PHY chip, waits, and then begins the running state. In the 
running state, this module just outputs the LED data from the receiver module, sends the switch 
data to the sender, and signals the sender when key3 is pushed. Furthermore, key1 is used to 
reset this state machine to the beginning, as well as to reset the state machine of the sender 
and receiver as well.  
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Clock and Reset Methodology 
Our design uses the onboard 50 MHz clock signal with a clock scaler to generate a 1 MHz clock 
that is used to synchronize the logic in all our modules. This includes the control clock for the 
ethernet module as well as the FIFO tx and rx clocks. The only other clock used is from an 
onboard 25MHz oscillator, and is for the MII interface between the Ethernet MAC module and 
the PHY chip. 
 
Our design uses a synchronous reset on key1 to set all our modules to their initialization or 
starting states. This allows us to ensure that the ethernet MAC module and PHY chip are 
properly initialized before we attempt to use them. 
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I/O Summary 

I/O Location  I/O Location  I/O Location 

clk PIN_Y2  switches[17] PIN_Y23   rx_clk PIN_A15 

button PIN_R24   switches[16] PIN_Y24   rx_data[3] PIN_C15 

reset_button PIN_M21   switches[15] PIN_AA22   rx_data[2] PIN_D17 

red_leds[17] PIN_H15   switches[14] PIN_AA23   rx_data[1] PIN_D16 

red_leds[16] PIN_G16   switches[13] PIN_AA24   rx_data[0] PIN_C16 

red_leds[15] PIN_G15   switches[12] PIN_AB23   rx_en PIN_C17 

red_leds[14] PIN_F15   switches[11] PIN_AB24   rx_err PIN_D18 

red_leds[13] PIN_H17   switches[10] PIN_AC24   tx_clk PIN_B17 

red_leds[12] PIN_J16   switches[9] PIN_AB25   tx_data[3] PIN_B19 

red_leds[11] PIN_H16   switches[8] PIN_AC25   tx_data[2] PIN_A19 

red_leds[10] PIN_J15   switches[7] PIN_AB26   tx_data[1] PIN_D19 

red_leds[9] PIN_G17   switches[6] PIN_AD26   tx_data[0] PIN_C18 

red_leds[8] PIN_J17   switches[5] PIN_AC26   tx_en PIN_A18 

red_leds[7] PIN_H19   switches[4] PIN_AB27   tx_err PIN_B18 

red_leds[6] PIN_J19   switches[3] PIN_AD27   phy_reset PIN_C19 

red_leds[5] PIN_E18   switches[2] PIN_AC27   mdc PIN_C20 

red_leds[4] PIN_F18   switches[1] PIN_AC28   mdio PIN_B21 

red_leds[3] PIN_F21   switches[0] PIN_AB28     

red_leds[2] PIN_E19        

red_leds[1] PIN_F19        

red_leds[0] PIN_G19        
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Testbench Design 
Initialization 

 
The simulated waveform above shows an overview of the initialization sequence in the 

Main module's state machine. In the simulation, the initial RESET_PHY state is skipped 
because it includes a long delay. However, the following MAC initialization states are clearly 
visible, as are the reads and writes to PHY registers, which include the corresponding MDIO 
output. The pulses where reg_busy drops low indicate the end of a register operation, which 
explains why each of those configuration states moves to the next state when the reg_busy flag 
goes low for a cycle. The bottom three signals show the MAC module successfully interacting 
with the PHY chip through the MDIO interface to pass on the configuration we are sending to it. 
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TX 

 
The above waveform shows the send operation of the Sender and Small MAC modules. 

The sender module moves out of its IDLE state when the send signal is pulsed high for a clock 
cycle. Then the sender sets the start_packet signal, reads the first word from memory, and 
pulses write enable to tell the MAC to read the valid data. Start_packet is then cleared, and the 
sender increments the RAM address, sending the rest of the packet data to the MAC until it 
reaches the final word at RAM address 0101, where is pulses the end_packet signal. The 
sender then returns to the IDLE state while the MAC module clearly sends the data over the MII 
interface to the PHY chip.  
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RX 

 
The above waveform shows the receive operation taking place for data that we sent from 

the send operation and configured to loopback in the ethernet module. When the sop and 
rx_enable signals go high, our module begins writing the incoming packet data into RAM in 
incrementing address locations, as shown above.Then, at the end of the receive operation 
(signaled by the eop signal going high), there is no pulse on the rx_err signal, so the receive 
module copies the LED data from the packet just put in memory into memory location 1111, 
which is where the actual LED data is stored that is output to the lights. Then the module returns 
to its IDLE state in which it exposes this LED data to main and waits for the next receive. 
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Synthesis Analysis 

Resource Utilization

 
This design used more of the logic elements on the board than any of our previous designs. The 
majority of this logic was a part of the Ethernet Core IP module that we included, and not from 
the code we wrote. There were many pins involved, including 18 LED pins, 18 slide switch pins, 
multiple push button pins, a clock, and 17 pins necessary for the communication between the 
FPGA and the ethernet PHY chip. 
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Synthesized Circuit 
Top Level RTL 

 
This is the top level RTL view for our design. The two small blocks on the left are the clock 
scaler and debouncer modules. The far right module is our ethernet module. The middlemost 
block is the ram2port module, and the remaining three contain the majority of our 
implementation: main, sender, and receiver. We will not detail the circuitry of the clock scaler or 
debouncer since they are recycled from past labs, or the ram2port and ethernet module since 
they were generated using Intel IP. 
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Main RTL 

 
The above figure shows the RTL view of our main block. The large yellow box on the left 
represents the state machine with its various initialization steps. To the left, various comparators 
can be seen that help move the machine through its states at the correct times. You can then 
see a series of OR gates and muxes that control the logic for cases that should occur when 
transitioning between given states, and that also end up resetting the state count. There are 
three registers a little further to the right that hold the values of the push button, the state count 
and the slide switches. The column of muxes in the top right is used to drive the LED output 
logic. It is complicated because our design lights up a unique LED sequence during each 
initialization step for debugging purposes. The bottom right contains combinational logic that 
primarily drives the appropriate bits to the ethernet module’s input data bus. 
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Sender RTL 

 
This is the sender RTL view for our design. On the left are a couple of muxes with XOR gates 
that implement logic for what should happen when our state machine transitions from one 
specific state to another given state. Past this are a couple of circles that implement an equalto 
comparator and an addition operator for the state_count variable. The remainder of the logic is 
primarily to perform certain actions based on the state. Finally, the yellow box on the right 
implements the state machine for this module. 
 
Receiver RTL

 
The figure above is the receiver module's RTL. The state machine is clearly visible on the left, 
with the combinational logic to the left of it that controls moving between the states. To the right 
of the state machine is the logic used to reset the state_count, which is held in the register in the 
middle of the figure. To the right of that is the logic used to control the ram, such as the register 
used to hold the current write address to the ram. Finally, there are some output MUXs to 
control the outputs to the port A of the RAM as well as the LED outputs.  
 

Timing Analysis 
After declaring the 50MHz, 1 MHz, and 25 MHz clocks, our design met timing. A few warnings 
were generated by the Ethernet Core IP, but they did not seem significant enough to render the 
design nonfunctional, and the design worked fine on the board even with these warnings. 
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Appendix 
Code is attached next. 


