
Curating Embodied Navigation Datasets for Lifelong Learning

Damon George & Jacob Krantz

June 9 2021

Abstract

Embodied navigation datasets commonly exist in an episodic format where individual episodes
are treated as i.i.d. samples. However, this i.i.d. assumption is incorrect – episodes from the
same scene are correlated. In the real world, this treatment would look like: 1) ask a robot to
navigate in a scene, 2) reset its memory, and 3) ask the robot to navigate again in the same scene.
This procedure is ineffective since past experience can inform future decision-making in the same
scene. In this work, we develop a method to transform existing embodied navigation datasets to
“tour”-based datasets; each tour in a transformed dataset contains a set of episodes such that for
all pairs of episodes in the set, an oracle agent can inter-navigate between them. We show that
this transformation can be solved via a reduction to the minimum vertex cover problem (MVC)
or alternatively the maximum independent set problem (MIS). We can then reduce both of these
formulations to SAT or PMAX-SAT. In analyzing the performance of these reduction methods
on a real navigation dataset (VLN-CE [1]), we find that our best method (MVC-PMAX-SAT)
solves the dataset transformation problem faster than an off-the-shelf MVC solver.

1 Introduction

In embodied navigation tasks, an agent is instantiated in either a simulated or physical environment and
must take actions to follow a path or reach a goal location. Recently, there has been a heavy focus on
evaluating navigation agents in novel environments and in an episodic fashion, i.e. once an agent calls STOP,
memory is reset and the agent is teleported to the start of another episode [2–5]. However, this is neither
realistic (we would like our robots to not rely on teleportation), nor is it effective from a life-long learning
perspective (memory from past episodes can inform decision-making in future episodes). For these reasons,
we aim to construct an embodied navigation dataset that is a subset of the original, such that if episodes
are taken in random permutation, an agent can inter-navigate between them all. In other words, we wish to
remove all episodes from the dataset that can’t be navigated to/from other episodes within the same scene.
We choose our problem to be the culling of existing datasets rather than the curation of new ones because
we can leverage the wealth of existing embodied navigation datasets that took significant effort to create.
Our method is general enough to transform these datasets in an automated and efficient manner.

The dataset transformation problem can be viewed as a graph problem in which each episode is a vertex,
and an edge exists between two episodes if it is NOT possible for an agent to navigate between them. In
this way, the minimum vertex cover problem finds the minimum number of episodes to remove while the
maximum independent set problem finds the largest set of episodes to keep. Both of these formulations are
classic NP-Hard problems that can be solved via reduction to SAT.

We apply our method to the Vision-and-Language Navigation in Continuous Environments dataset
(VLN-CE [1]), which specifies paths through a simulated 3D environment using natural language instructions.
An example of such an instruction could be “Walk to the end of the hallway. Turn left into the kitchen and
stop near the stove.” Agents are further given RGB and depth observations and must take a sequence of
low-level discrete actions (FORWARD, LEFT, RIGHT, STOP) to navigate to within 3.0 meters of the goal location.

1

2 Method

In this section, we formalize our dataset transformation problem and detail our solution that reduces the
problem to SAT. We will consider the case where all episodes in the dataset exist in the same scene. For
datasets with multiple scenes, a transformation can be applied to each scene’s episode set. The resulting
dataset would be the union of each scene’s transformed episode set.

2.1 Problem Formulation

Each episode in the dataset, t ∈ D, has a starting location t(s) and goal location t(g). The input to our
problem can intuitively be formulated as a directed graph G = (V,E) where ∀t : t(s) ∈ V and t(g) ∈ V .
There are two types of edges: edges from start to goal within a single episode (∀t : (t(s), t(g)) ∈ E) and

edges from the end of one episode to the start of another (∀t1, t2 s.t. t1 6= t2 : (t
(g)
1 , t

(s)
2) ∈ E).

Goal: compute a minimal subset of vertices S ⊆ V , resulting in a graph Ĝ with vertices V \S such that
all remaining edges e ∈ Ê can be navigated by an agent.

2.2 Framing Dataset Culling as a Minimum Vertex Cover

At a high level, we want to transform our directed graph G into a graph that only contains edges along
which an agent cannot navigate. From such a graph, the minimum vertex cover gives us the smallest subset
of vertices such that if removed, no edges remain in the graph. The resulting graph after removing such
vertices is our final transformed “tour”-based dataset.
1. Graph Simplification. We begin by observing that G can be simplified given general knowledge of
navigation datasets. We assume that all edges of the form (t(s), t(g)) ∈ E are navigable – the datasets we
are interested in do not contain impossible episodes. As such, we can remove these edges from E, leaving us

only with edges of the form ∀t1, t2 s.t. t1 6= t2 : (t
(g)
1 , t

(s)
2) ∈ E.

We note that a “tour”-based episode set should be navigable taken in any permutation. For this reason,
we can collapse start and goal vertices of the same episode into a single vertex, replacing t(s), t(g) ∈ G with t
for all episodes t. This gives us a fully connected, undirected graph where each episode is a vertex and each
episode pair is an edge. We call this modified graph G(t) = (V (t), E(t)).
2. Episode-to-Episode Navigability. Given G(t), we run an A*-based path planning algorithm from the
end of each episode to the start of each episode. If the algorithm is not able to compute a navigation plan
under oracle conditions (given a known and static navigation mesh), we deem the two episodes not navigable.
If the path plan is an action sequence of over 500 steps, we also deem the two episodes not navigable. These
exceedingly long action sequences can be the product of inconsistencies in the navigation mesh or navigation
that is only feasibly after collision with obstacles. At this point we know for each edge e ∈ E(t) whether
or not it is navigable. We construct a new graph Gm = (V (t), E(m)) such that all edges are not navigable:
E(m) = {e | e ∈ E(t) and e is not navigable}.
3a. The Minimum Vertex Cover. Finally, Gm is a graph whose minimum vertex cover is a minimal set
of episodes such that if removed from the dataset, makes all episode sets in the dataset a valid tour.
3b. The Maximum Independent Set. Equivalently, Gm is a graph whose maximum independent set is
the largest set of episodes such that if culled from the dataset, makes all episode sets in the dataset a valid
tour. This formulation is equivalent because the complement of a solution to the maximum independent set
problem is a valid solution to the minimum vertex cover problem.

2.3 Encoding Minimum Vertex Cover as SAT

The k-vertex cover problem, i.e. {G | G = (V,E) is a graph with a vertex cover of size ≤ k}, is a classic
NP-complete problem, and the reduction of this decision problem to SAT is straightforward. A vertex cover
is a subset of vertices in a graph that touch at least one endpoint of every edge in the graph. To reduce the
k-vertex cover problem to SAT, we must create a boolean formula φvc that is satisfiable iff G contains a vertex
cover of size k. To create this formula, we first define a boolean variable xi for every vertex vi ∈ V . In φvc,
we simply add clauses of the form (xi ∨ xj) if an edge exists between those two vertices, i.e. if (vi, vj) ∈ E.
Each clause enforces the constraint that at least one endpoint of each edge in the graph must exist in the

2

vertex cover. Lastly, we add a final condition that x1 + x2 + . . . + x|V | ≤ k. The logical conjunction (and)
of theses clauses is a boolean formula easily translateable to SAT/SMT and solveable by standard libraries.

φvc(G, k) =

(∑
vi∈V

xi ≤ k

)
∧

 ∧
(vi,vj)∈E

(xi ∨ xj)

 (1)

If this formula is satisfiable, G has a vertex cover of size ≤ k, and the corresponding true assignments to the
variables determines the vertices included in the vertex cover. To prove that this formula works as intended,
let’s first inspect the first clause, the at-most constraint. Clearly this clause enforces the maximum number
of true variables to k, and since the true variables correspond to vertices in the vertex cover, this clause
enforces the maximum size of the vertex cover. The second set of clauses ensures that for each edge, at
least one of the endpoints is in the vertex cover. Since φvc is the logical conjunction of all these clauses, this
formula is clearly satisfiable iff G has a vertex cover of size ≤ k.

However, the minimum vertex cover problem (MVC) is not a decision problem; it is an optimization
problem to find the minimum k such that a vertex cover of size k exists in G. As such, this problem is
NP-hard and is not so easily reducible to SAT. Using the above formulation of the k-vertex cover decision
problem, we can write the MVC problem as

min
∑
vi∈V

xi ; s.t.
∧

(vi,vj)∈E

(xi ∨ xj) (2)

As stated, this maximization problem cannot be encoded in SAT and solved with a standard SAT solver.
The simplest solution to this issue is to search for k by testing values of k in φvc(G, k) with a SAT solver. In
this work, we implement a simple binary search over the range of possible vertex cover sizes k ∈ [1, |V |]. We
will call this method MVC-Search. With this method, O(log |V |) queries to the SAT solver are made during
a search, making this solution clearly inefficient.

Efficiency Improvement: Reducing to PMAX-SAT.
Despite the limitation that the MVC problem cannot be encoded in SAT, the MVC problem can easily be

encoded in PMAX-SAT. MAX-SAT is a generalization of SAT, with the problem being to find the maximum
number of satisfiable clauses in a CNF boolean formula. It is obvious that MAX-SAT is NP-Hard because
SAT could easily be decided by MAX-SAT (simply check if the output of MAX-SAT is the total number
of clauses). PMAX-SAT extends MAX-SAT by differentiating between soft and hard clauses, with the goal
being to maximize the number of satisfiable soft clauses while ensuring all hard clauses are satisfied.

To reduce the MVC problem to PMAX-SAT, we must first rewrite the minimization in (3) as a maximization.

max
∑
vi∈V

¬xi ; s.t.
∧

(vi,vj)∈E

(xi ∨ xj) (3)

To convert this maximization to a PMAX-SAT expression, we can simply define the summation as a set of
soft clauses and the edge constraint as a set of hard clauses.

φmvc(G) =

(∧
vi∈V

(¬xi)∗
)
∧

 ∧
(vi,vj)∈E

(xi ∨ xj)

 (4)

where the (·)∗ indicates a soft clause. All other clauses are hard and must be satisfied. With this formula
φmvc, a standard PMAX-SAT or Weighted MAX-SAT solver can be used to find the minimum vertex cover.
The solver will maximize the number of vertices not included in the vertex cover (thereby minimizing the
vertex cover size), while ensuring that endpoints from every edge are included in the vertex cover. We will
call this method MVC-MAXSAT.

2.4 Encoding Maximum Independent Set as SAT

The m-independent set problem, ie {G | G = (V,E) is a graph with an independent set of size ≥ m}, is
another classic NP-complete problem related to the vertex cover problem. An independent set is a subset

3

of vertices in a graph such that none of the vertices in the set are adjacent. The independent set is the
complement of the vertex cover, which makes its SAT reduction a simple variation of the vertex cover
reduction. The edge constraint clauses in the formula φis take the form of (¬xi ∨ ¬xj) to ensure that both
endpoints of an edge don’t exist in the independent set. And similarly, instead of including an at-most
constraint, this reduction uses an at-least constraint. The resulting SAT reduction of the m-independent set
problem is therefore

φis(G,m) =

(∑
vi∈V

xi ≥ m

)
∧

 ∧
(vi,vj)∈E

(¬xi ∨ ¬xj)

 (5)

This formula is satisfiable iff G has an independent set of size ≥ m, and the true variable assignments
determine the independent set membership.

Similarly to the MVC problem, the maximum independent set problem (MIS) is an optimization problem,
not a decision problem, making this problem NP-hard. The corresponding maximization problem for MIS is

max
∑
vi∈V

xi ; s.t.
∧

(vi,vj)∈E

(¬xi ∨ ¬xj) (6)

Since this optimization problem cannot be encoded in SAT, we implemented binary search for this
problem as well, which we call the MIS-Search method. Just like the MVC-Search method, this search
requires O(log |V |) queries to the SAT solver using the boolean formula φis.

Efficiency Improvement: Reducing to PMAX-SAT.
The MIS problem is also easily encodeable in PMAX-SAT. Since the MIS problem is already a maximization,

no change is needed to the MIS formulation in (6) to create the PMAX-SAT formula. Once again, we define
the at-least constraint as a set of soft clauses.

φmis(G) =

(∧
vi∈V

(xi)
∗

)
∧

 ∧
(vi,vj)∈E

(¬xi ∨ ¬xj)

 (7)

where the (·)∗ indicates a soft clause and all other clauses are hard, i.e. must be satisfied. With this formula
φpmax, a standard PMAX-SAT or Weighted MAX-SAT solver can be used to find the maximum independent
set. We call this method MIS-MAXSAT.

3 Experiments

We run experiments on both synthetic datasets and a real dataset to answer the following questions: (3.1)
How does the performance of the MVC reduction compare to the performance of the MIS reduction? (3.2)
How does the performance of the PMAX-SAT reduction compare to the standard SAT reduction? (3.3)
How do the dimensions of episode count (graph vertices) and the number of non-navigable episode pairs
(graph edges) contribute to the cost of our solution? (3.4) How efficient are these methods when applied to
a real-world dataset?

Three random graph generation methods were used in the synthetic datasets. The simplest method
generated random graphs according to the Gn,m variant of the Erdős-Rényi model [6]. This model generates
graphs randomly and uniformly from the set of all graphs with n nodes and m edges. The second method
used the Barabási-Alpert model [7] to generate scale-free graphs. This method was preferable to the first
because it generates graphs with a few high degree vertices, which more likely approximates real life datasets
in which some episodes are more problematic than others. The last graph generation method we developed
to create random graphs with an approximate MVC size k. To generate these graphs, we randomly selected
k vertices to be in the MVC, and then randomly generated the desired m edges with the added constraint
that at least one endpoint of every edge must be in the MVC. Since edges were allowed within the selected
vertex cover, the desired MVC size k was only an upper bound. This method allowed us to easily test the
effect of the MVC size on the run time of the SAT reductions.

All timing tests were performed on a custom Ubuntu PC with an Intel i7-10700K cpu running at 3.8GHz.

4

3.1 MVC vs. MIS Reductions

20000 40000 60000 80000 100000
|V|

0

5

10

15

20

Ti
m

e
(s

ec
)

|E|/|V|=1 and |MVC|=500
MVC-MAXSAT
MIS-MAXSAT

(a)

250 500 750 1000 1250 1500 1750 2000
|V|

0

10

20

30

40

Ti
m

e
(s

ec
)

|E|/|V|=10 and |MVC|=100
MVC-Search
MIS-Search

(b)

Figure 1: Comparisons of MVC vs. MIS reductions for both PMAX-SAT and SAT-search reductions. Each
trial uses a constant ratio of edges to vertices and a constant MVC size, which are shown in the Figures.

In Figure 1, we compare the performance of reducing our dataset transformation problem to the MVC and
the MIS problems. We make this comparison across a scaled number of vertices using the randomly-generated
synthetic problem instances. While scaling the number of vertices, we choose a constant ratio of edges to
vertices and a constant MVC size in order to prevent those additional variables from influencing the results.
We present results for both the PMAX-SAT reduction (Figure 1a) and the SAT reduction with binary
search (Figure 1b). For the SAT-search algorithms, we find that MVC and MIS reductions perform similarly
without any significant difference in computational speed. However, for the PMAX-SAT methods, MVC and
MIS reductions perform similarly only for low |V |. As |V | is scaled higher, MVC begins to outperform MIS.
This performance improvement becomes more pronounced as the problem difficulty increases, as we can see
in Figure 1a. For instance, at |V | = 1000, MVC is only 1.05 times faster than MIS (averaged over 300 trials)
whereas at |V | = 10000, MVC is 1.4 times faster than MIS (averaged over 50 trials).

Although the PMAX-SAT boolean formulas for MVC and MIS, φmvc and φmis contain the same number
of clauses, MVC is likely faster because typically |MVC| < |V |/2. Because the MVC is the complement
of the MIS, this means that the MVC size (the number of episodes in a minimal vertex cover) is typically
less than the MIS size (the number of episodes in a maximal independent set). As a result, the number of
satisfiable soft clauses in the MVC-MAXSAT formula is less than corresponding number of satisfiable soft
clauses in the MIS-MAXSAT formula. This may give the MAX-SAT solver an easier time in finding the
MVC solution, but this is speculation.

3.2 MaxSAT vs. SAT Reductions

In Figure 2, we compare the performance of the PMAX-SAT reduction to SAT with binary search. As in
Section 3.1, we make this comparison across a scaled number of vertices using randomly-generated synthetic
problem instances, a constant ratio of edges to vertices (|E|/|V | = 10) and a constant cover of 100. We
present results for both the MVC and MIS reductions. We find that for both MVC and MIS, the PMAX-SAT
reduction significantly outperforms the SAT-Search reduction for all tested problem instances – not just by
a constant factor across scaled vertices, but exponentially so. The poor scaling of the SAT-search reduction
makes it infeasible to run for |V | > 2000, whereas the PMAX-SAT reduction is able to handle graphs up to
|V | = 100000.

The PMAX-SAT methods see such a signficant improvement in performance because they query the
PMAX-SAT solver only once, whereas the SAT-Search methods make O(log |V |) queries to their SAT solver.
Although a single query to the SAT solver is likely faster than a single query to the -SAT solver (because

5

0 2000 4000 6000 8000 10000
|V|

0

10

20

30

40

Ti
m

e
(s

ec
)

|E|/|V|=10 and |MVC|=100
MVC-Search
MVC-MAXSAT
MIS-Search
MIS-MAXSAT

Figure 2: Comparisons of PMAX-SAT vs. SAT-search reductions for both MVC and MIS reductions. Each
trial uses the constant ratio |E|/|V | = 10 and a constant MVC = 100.

PMAX-SAT is a more difficult complexity class), this is insignificant compared to the performance loss
of making multiple queries to the SAT solver. Furthermore, the SAT formula φvc is likely more complex
than the PMAX-SAT formula φmvc because of the at-most constraint. Ignoring the |E| clauses required for
both formulas, the PMAX-SAT expression requires exactly |V | soft clauses whereas typical at-most SAT
encodings require more than a linear number of clauses, as well as extra variables [8]. This increased formula
complexity could actually make each SAT query slower than the single PMAX-SAT query, though this was
not tested.

3.3 Solution Cost

0 2000 4000 6000 8000 10000
|V|

0

5

10

15

20

25

30

35

Ti
m

e
(s

ec
)

|E|=10000 and |MVC|=100
MVC-Search
MVC-MAXSAT
MIS-Search
MIS-MAXSAT

(a)

0 20000 40000 60000 80000 100000
|E|

0

5

10

15

20

25

30

Ti
m

e
(s

ec
)

|V|=1000 and |MVC|=100
MVC-Search
MVC-MAXSAT
MIS-Search
MIS-MAXSAT

(b)

Figure 3: Scaling of various methods due to vertices (left) and edges (right).

We are interested in determining how our solutions scale with increasing vertices and increasing edges
studied independently. In Figure 3a, we fix the number of edges to 10000 and the cover to 100. We find that
both MVC and MIS PMAX-SAT reductions scale near-linearly with the number of vertices. On the other
hand, the SAT-search reductions for both MVC and MIS scale quite poorly in what appears to be another
exponential curve.

In Figure 3b, we fix the number of vertices to 1000 and the cover to 100. We find once again that both

6

MVC and MIS PMAX-SAT reductions scale near-linearly with the number of edges. On the other hand, we
observe the SAT-search reductions to actually speed up for higher |E| and converge, following an exponential
decay. Although this behavior is counter intuitive, it occurs because the size of the minimum vertex cover is
fixed. As |E| increases, the problem becomes simpler because the vertices in the vertex cover become more
obvious. For example, when |E| = 100000, each vertex in the cover must have a high degree (on average
100). Thus finding the vertex cover is nearly as simple as finding the vertices with the highest degrees.
Although this is an oversimplification of the computation that the SAT solver is performing, the solver likely
exploits this information in some other way, resulting in the SAT-Search methods actually speeding up when
|E| increases for a fixed value of the MVC size.

0 200 400 600 800 1000
|MVC|

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ti
m

e
(s

ec
)

|V|=10000 and |E|=100000
MVC-MAXSAT
MIS-MAXSAT

(a)

0 50 100 150 200
|MVC|

0

20

40

60

80

100

Ti
m

e
(s

ec
)

|V|=1000 and |E|=10000
MVC-Search
MIS-Search

(b)

Figure 4: Scaling of PMAX-SAT methods (left) and the SAT-Search methods (right) due to the minimum
vertex cover size |MVC|.

In addition to scaling with |V | and |E|, we also note that our solutions scale with the solution size,
i.e. the size of the minimum vertex cover. This explains why we fixed |MVC| to constant values in all the
previous analyses. In Figure 4, we analyze the scaling performance of the SAT-Search and PMAX-SAT
methods against increasing values of |MVC|, while maintaining fixed values of |V | and |E|. In Figure 4a,
we see that the PMAX-SAT reductions scale linearly with increasing MVC size, although this linear slope is
larger than any of the slopes we’ve seen thus far, suggesting that the MVC size is one of the most important
factors in determing the PMAX-SAT runtimes. The SAT-Search methods once again scale exponentially, as
shown in Figure 4b. In fact, the SAT-methods scale so poorly with the MVC size that we were unable to test
any values above |MVC| = 200, which makes these methods practically unusable for datasets of significant
complexity.

The difficulty of these algorithms increases with |MVC| for likely the same reason that the running time
of the SAT-Search methods decreased in Figure 3b. Small vertex cover sizes (relative to the graph size)
correspond to more obvious solutions to the minimum vertex cover problem. And vice-versa, large MVC
sizes result in a more uniform distribution of degrees among the vertices, increasing the difficulty of finding
the specific vertices to minimize the cover size. Unfortunately, since the purpose of our methods is to find
the minimum vertex cover, it is impossible to know beforehand whether a given dataset will have a large
cover size, and therefore a high computational complexity.

3.4 Real-world Application

In Figure 5, we show how our tool performs on a real-world dataset (VLN-CE). We find that our tool can
effectively transform this dataset into a “tour”-based one in a computationally feasible time. Specifically, the
largest split of the dataset (Train), can be transformed in well under a second using our MAXSAT reduction
from either MIS or MVC. As is consistent with results in Section 3.4, we find that the SAT reduction is
significantly slower than the MAXSAT reduction. We find that an exact branch and bound algorithm from

7

Figure 5: Timings for transforming the VLN-CE dataset. We compare the MIS reduction to the MVC
reduction. Further, we show a comparison of performance when reducing to SAT and MAXSAT and how
these reductions compare to just solving MIS or MVC directly via an algorithm from Cliquer. Each reported
time is an average across 5 trials. For reference, |Vtr| = 10819, |Etr| = 2778 and |MVCtr| = 119; |Vv-s| = 778,
|Ev-s| = 18 and |MVCv-s| = 6; and |Vv-us| = 1839, |Ev-us| = 126 and |MVCv-us| = 12.

the Cliquer package, while it performs the fastest for small dataset splits (Val-Seen, Val-Unseen), does not
scale as well as our MAXSAT reduction when solving a larger dataset split (Train).

3.5 Implementation Notes

We implement our dataset transformation tool in the Python language. The graphs generated in our program
are stored and manipulated using the networkx1 library. Prior to implementing our SAT and MaxSAT
reductions, we used off-the-shelf MVC and MIS solvers in sagemath2. For the SAT and MaxSAT reductions,
we used the pysat3 library. We use the pandas4 library for saving and comparing results between experiment
runs. Along with our PDF report, we include a zip file containing code that can be used to replicate
every experiment we ran in the paper. The code is general enough to apply to other real-world datasets
beyond VLN-CE, which provides benefit to other researchers working in the embodied navigation space.
Any standard graph format could be used to interface with our Python code, but currently the Python
tool accepts as input any text file containing a newline-separated list of edges of the form: 〈 split-name,

scene-id, [episode-id1, episode-id2] 〉, where each edge signifies a non-navigable transition between
two episodes, as defined in our original problem formulation.

4 Conclusion

We have identified and addressed the problem of transforming an embodied navigation dataset from an
i.i.d. episodic dataset into a corresponding “tour”-based dataset that links together episodes for lifelong
learning and evaluation. We develop an array of solutions to this problem involving either a reduction to the
minimum vertex cover problem (MVC) or the maximum independent set problem (MIS). From either of these
reductions, we show that it is possible to reduce any problem instance into SAT, or, more efficiently, into
PMAX-SAT. We find that our most efficient solution (MVC-PMAX-SAT) scales better than an off-the-shelf
MVC solver and can solve an instance of a real-world dataset (VLN-CE) nearly instantaneously. We hope
our method can inspire future work on lifelong learning for embodied navigation agents, which we view as a
critical skill to operating agents in the vast and complicated real world.

References

[1] J. Krantz, E. Wijmans, A. Majumdar, D. Batra, and S. Lee, “Beyond the nav-graph: Vision-and-language
navigation in continuous environments,” in ECCV, 2020, pp. 104–120.

1https://networkx.org/
2https://doc.sagemath.org/html/en/reference/graphs/sage/graphs/graph.html
3https://pysathq.github.io/
4https://pandas.pydata.org/

8

[2] P. Anderson, A. Chang, D. S. Chaplot, A. Dosovitskiy, S. Gupta, V. Koltun, J. Kosecka, J. Malik, R. Mottaghi,
M. Savva et al., “On evaluation of embodied navigation agents,” arXiv preprint arXiv:1807.06757, 2018.

[3] Manolis Savva*, Abhishek Kadian*, Oleksandr Maksymets*, Y. Zhao, E. Wijmans, B. Jain, J. Straub, J. Liu,
V. Koltun, J. Malik, D. Parikh, and D. Batra, “Habitat: a platform for embodied ai research,” 2019.

[4] P. Anderson, Q. Wu, D. Teney, J. Bruce, M. Johnson, N. Sünderhauf, I. Reid, S. Gould, and A. van den Hengel,
“Vision-and-language navigation: Interpreting visually-grounded navigation instructions in real environments,”
2018.

[5] D. Batra, A. Gokaslan, A. Kembhavi, O. Maksymets, R. Mottaghi, M. Savva, A. Toshev, and E. Wijmans,
“Objectnav revisited: On evaluation of embodied agents navigating to objects,” arXiv preprint arXiv:2006.13171,
2020.

[6] P. Erdös and A. Rényi, “On random graphs,” Publicationes Mathematicae Debrecen, vol. 6, p. 290, 1959.

[7] A.-L. Barabási and R. Albert, “Emergence of scaling in random networks,” Science, vol. 286, no. 5439, pp.
509–512, 1999. [Online]. Available: https://science.sciencemag.org/content/286/5439/509

[8] P. M. Bittner, T. Thüm, and I. Schaefer, “Sat encodings of the at-most-k constraint,” in International Conference
on Software Engineering and Formal Methods. Springer, 2019, pp. 127–144.

9

