

 GONZAGA UNIVERSITY
School of Engineering and Applied Science

Center for Engineering Design and Entrepreneurship

Final Project Report
April 24, 2019

Smart Helmet
(Bike Safety Smart Sensor)

Prepared by:

___________________________ ______________________________
Arthur Lane Damon George

Robert Brajcich

Reviewed by:

Tim Ecklund
Faculty Project Advisor

1

TABLE OF CONTENTS

1 Executive Summary 2

2 Project Summary 3

3 Project Details 3
3.1 Project Goals and Objectives 3
3.2 Project Features 4

4 Research 7
4.1 Lithium Ion Batteries 7
4.2 DSRC Protocol Specification 7
4.3 FreeRTOS Usage 8
4.4 PCB Design 8

5 Engineering Work 8
5.1 Completed Tasks 8
5.2 Unfinished Tasks 10

6 Project Management 11
6.1 Schedule Review 11
6.2 Final Budget 11
6.3 Meeting Review 11

7 Analysis of Results 12
7.1 Analysis of Completed Work 12
7.3 Analysis of Incomplete Work 14
7.3 Final Product Improvements and Steps 15

8 Appendices 16
8.1 Abbreviations 16
8.2 Detailed Project Requirements 16
8.3 Total Budget Spend 18
8.4 PCB Bill of Materials 20
8.5 Core Software Specifications 21

2

1 Executive Summary
As emerging smart vehicle technologies enter our roadways, Vehicle-to-Everything

(V2X) communication will improve the safety of road users. However, as cars and trucks
undergo technological changes involving ample power and space for advanced electronics,
cyclists may fall behind. In this study, we attempt to incorporate cyclists in the growing V2X
ecosystem by developing a prototype, the 'Smart Helmet'. This product broadcasts positional and
inertial data about the cyclist to nearby cars using the predefined Dedicated Short-Range
Communications (DSRC) standard, and receives similar data from nearby cars to provide the
cyclist with haptic and audible collision warnings from the helmet. We construct a custom
printed circuit board for the system to easily incorporate into a bike helmet as a consumer
product. Furthermore, we develop a traffic simulator program to easily test traffic scenarios with
the product. Simulation results show that even with the limited processing power available, this
product can adequately detect harmful collisions. Limited usability testing shows that the haptic
and audible warnings could function well in a consumer product. However, the V2X
communication and advanced GPS are still immature, and creating effective yet unobtrusive
audio warnings requires much testing. Overall, this study proves that this V2X system could
greatly increase cyclist safety and commonly feature on roadways in the next decade as smart
vehicle technologies continue to mature.

3

2 Project Summary
Technology that increases the visibility of cyclists to vehicles and vehicles to cyclists

benefits both the cyclist and vehicle communities. Blind corners, crowded intersections,
driveways, and street parking present roadway threats to cyclists and vehicles alike. New
technology focuses on the vehicle side of this dilemma, leaving the cyclist to rely on driver
decision making. Introducing cyclists into the new technologies for vehicle communication
increases road safety for both groups.

The bike safety smart sensor uses a communication system between vehicles and cyclists
in order to provide an alert system for cyclists. Our prototype uses an unlicensed RF band for
testing; however, the system design allows for configurability to the protocols of autonomous or
semi-autonomous vehicles. Global Positioning System (GPS) data from both parties determines
speed, direction, and location data which the units transmit over radio channels to others on the
road. This method of communication does not rely on line of sight, making it useful in dense
urban areas or other low visibility scenarios. Further, the cyclist’s device includes audio
equipment to notify them of nearby vehicle threats. This feature mitigates the risk of any vehicles
not equipped with transmitters. The system will mount on a cyclist’s helmet to make it easy for
anyone to incorporate it along with their current gear.

3 Project Details

3.1 Project Goals and Objectives

The main objective of this project is to create a functional prototype of our design that
mounts on a bicycle helmet. At minimum the prototype consists of a microcontroller-driven
system determining its GPS location data, transmitting it to nearby vehicles, receiving positional
data from these vehicles, and issuing audible warnings to the bicyclist based on any detected
hazards. This final deliverable also encompasses the necessary software to implement these
features, which runs on the onboard microcontroller (MCU). We will also have a PCB that
incorporates all the system hardware on a single board as well as an accompanying Bill of
Materials (BOM) for assembling the board.

This system needs a supporting software deliverable to simulate potentially hazardous
traffic scenarios for testing purposes. The supporting software runs as a Java desktop application
and includes a graphical interface featuring a top-down view of the simulated world. The
computer running the software connects through Universal Serial Bus (USB) to a microcontroller
which sends the spoofed vehicle data via a transceiver to the unit on the bicycle helmet.

We also included three PCB designs for testing the power supply system as well as
integrating the different components into a smaller form factor. Though this involves a long lead
time, due to manufacturing and assembly at the board houses, it serves as a good indication of

4

what a final product would look like. By going through the PCB design process, we hoped to get
a sense of the cost and size of what the final product would look like.

The secondary objective involves our goal as students to learn more in the field of
embedded design, PCB design, and software design, and to experience the typical steps involved
in designing a prototype with standard engineering methodologies.

3.2 Project Features

The essential features of the final product include the GPS connection, Vehicle to
Everything (V2X) communication, risk assessment, rechargeable batteries/power system, audio
warnings, and traffic simulation software, as detailed in Table 8.2.1 of the Appendix. V2X
communication and GPS connection form the basis for the idea of the project as the simulated
V2X communication between cyclists and vehicles requires a GPS connection to determine
speed, location and directional data. Radio transceivers at 915 MHz take the place of the actual
V2X chips due to the high cost and low availability of the new V2X chips. These transceivers
simulate V2X communication by following the standards of the protocol.

The core risk assessment software determines any dangers to the biker using the
wirelessly received GPS data from nearby vehicles. The system then notifies the cyclist using
audio warnings through speakers on the helmet. Short audio messages do not confuse or distract
the biker, and the speaker’s placement does not inhibit the cyclist’s awareness of the nearby
environment.

The product also features rechargeable batteries. Our design goal is to provide power to
the device for at least 2-3 hours. We implemented the rechargeable battery feature through a
custom power PCB (printed circuit board). To power all the electronic components in the design,
the board must provide both 3.3V and 5V from two series Lithium Ion batteries. The battery
recharging through a USB port became too difficult to test and verify, so charging requires
removal of the batteries from the system. An off the shelf product serves as a backup plan in the
event that the PCB’s do not function as anticipated.

The high level design of the system is shown next in Figure 3.2.

5

Figure 3.2.1: Full Design Block Diagram

The traffic simulation software provides evidence that the bike successfully receives data

from nearby vehicles. This allows for testing the functionality of the device using real-world
traffic scenarios. Furthermore, this software shows the full functionality of our finished
prototype.

Part of this project includes additional features outlined in Table 8.2.2 of the Appendix.
Haptic feedback was the highest priority additional feature because it provides an additional
warning system for the biker using vibration motors inside the helmet to signal the direction to
nearby vehicles. A full custom PCB is another stretch feature. We were able to complete the
design, however, the lead time on getting the board fabricated and assembled was longer than
anticipated. Due to this uncertainty, we also made a second iteration of the board which we
believed would have a greater probability of complete success on the first trial.

3.3 Project Constraints

The most pressing constraint on the development of our project centers around hardware
development. Due to cost issues for manufacturing the battery and power board, and delivery
time for the microcontrollers, we had to perform additional work not originally planned. Further,
many of the components and systems in our design required difficult manufacturing processes
which required extended lead times and assembly by a skilled manufacturer.

Our original intention involved having the power PCB fabricated and tested before winter
break. However, we fell short of this goal. We decided at the start of the second semester that

6

implementing the battery charging capability required time and money that we could not spare
due to the design limitations involving the necessary components. To come up with a “midway”
board that would provide the same power supply requirements, we completed a quick design
spin that removed the battery charging circuit on the first board and added the haptic motor
drivers. The goal of this board would be to use with our demonstration on Design Exposition
Day to make our prototype function similarly to the final design.

We also had all the components soldered on at an assembly house with a pick and place
machine to eliminate any errors from soldering the small components. We were under the
impression that the house would be able to return the assembled boards back in a week, however,
it ended up taking over three weeks which hurt our project timeline.

We ordered the final board with the full system integration at the end of March, and have
learned that the manufacturing process takes a long time. This combined with the time it takes to
get the board assembled with all the components pushed the timeline for the final product back.
Such features as laser drill vias, 4 mil trace width and spacing, ENIG finish, BGA and QFN
components, and component placement on both sides of the board, all contributed to the long
lead times for manufacturing.

Overall, these steps helped work towards the final design as they provide insight into
what the cost of producing this product at scale would be and would be the first step towards
achieving a finished product.

Another constraint discovered during initial module testing is the bandwidth capability of
the transceiver modules. An inverse relationship exists between the data rate through the air and
the range of the radios. The transceivers achieve enough bandwidth to support between 5 and 10
vehicles to exchange their messages at short range (in the same room, for example). This
configuration allows for traffic simulator test runs that include multiple vehicles, with the helmet
close to the simulator’s transceiver. Data rates that only handle a couple of vehicles allow for
longer ranges of multiple blocks in open areas. This constraint influences how testing occurs
using the Traffic Simulator and real world scenarios.

7

4 Research

4.1 Lithium Ion Batteries

H. Weiss and S. Volgger, "Insular power supply battery manager with balancing and protection
unit for Lithium-Ion batteries," ​2014 12th International Conference on Actual Problems

of Electronics Instrument Engineering (APEIE) ​, Novosibirsk, 2014, pp. 789-792.

Using Lithium Ion batteries in electronics design requires several essential design

considerations for a safe and effective final product. First, the popularity of Lithium Ion batteries
comes from their high energy density and low discharge rate which allow for longer lasting
power and battery life. These good qualities come with the trade-off of higher price and potential
safety concerns with the batteries themselves if the batteries reach an overcharged or uncharged
state. To mitigate these risks, incorporating Lithium Ion batteries into electronics design also
involves the need for supporting circuitry. This includes a charge control circuit which monitors
under and over voltage conditions as well as matches the source and load voltages. If the battery
pack consists of two or more series batteries, then the design also requires a balancing circuit to
maintain the same voltage across each series battery. These design features enable the safe use of
Lithium Ion batteries and increase the life of the batteries. Our project involves the use of a cell
balancing IC to regulate the two series batteries for our project. Also, a charger IC charges the
two Lithium Ion batteries from a 5V USB input.

4.2 DSRC Protocol Specification

After receiving approval for the budget, we purchased access to the current Dedicated
Short-Range Communication (DSRC) Protocol Specifications. The DSRC Protocol governs the
format and rules of the wireless V2X messages used in this project. This project focuses on
implementing the 'Personal Safety Message' from this protocol's message set, which is a periodic
informational message designed for biker and pedestrian transmissions. This message includes
all the data from the onboard sensors of the smart helmet. The design also implements the 'Basic
Safety Message' which specifies motorized vehicle message transmissions. This allows the
product to receive information from nearby vehicles to determine any threats to the biker, which
is the main purpose of this product.

The DSRC Protocol also specifies how to securely encode, decode, and randomize parts
of the messages sent from V2X devices. However, implementing this part of the protocol falls
out of the scope of this project. This smart helmet prototype only uses standard wireless packet
radios, and not the state-of-the-art V2X transceivers that would go in a final product. Using V2X
transceivers allows for securely encoding and decoding the safety messages themselves, which is
why message coding and decoding does not feature in our project.

8

4.3 FreeRTOS Usage

Part of this semester’s research involved studying how to implement a real-time system
to perform multiple tasks through various interfaces simultaneously without significant latency.
We chose to solve this dilemma by using a Real Time Operating System (RTOS) to handle task
scheduling. Using an RTOS does not introduce the significant overhead of a full operating
system distribution such as Linux. While various RTOSes exist on the market, we selected
FreeRTOS for our project due to its wide scale use, well-documented operation, and free
availability. To prepare ourselves for implementing a real-time system using this framework, we
thoroughly read through the manual and tutorials and developed the various software modules, or
tasks ​ necessary for implementing our project.

4.4 PCB Design

The third and final PCB design for this project involved incorporating all the subsystems
of the final, working prototype on to a single board to best replicate what the final product would
look like. Such a design involved many different complex features including buck converter, RF
system, microcontroller, audio amplifier, motor driver, and general best PCB layout. To try and
achieve the highest level of success with the first board, we obtained schematics and layouts for
the breakout boards and studied them to determine ideal component placement, trace routing, via
use, layer selection and manufacturing processes. We conducted research on best PCB design
practices to make up for subjects not taught in our coursework. Intel provided great
documentation on high speed design layout guidelines which were used for general layout
guidelines while Texas Instruments featured a number of articles on routing for specific types of
systems such as RF traces, antennas, buck converter, audio amplifiers and digital drivers.

5 Engineering Work

5.1 Completed Tasks

This semester we tested our first PCB iteration and completed the design for our second
and third. Assembly for the second board finished with a week to spare; however, the final board
took longer than anticipated for manufacturing. This involved developing a schematic and layout
for two boards, determining and ordering components and maintaining a library or all the parts.
To accomplish successful routing for the two boards, we studied the schematics of the breakout
boards we used in prototyping and researched layout guidelines from trusted manufacturers.

In addition to the hardware work done on the schematic and layout of the power PCB, we
also completed the core software, according to the Core Software Specifications located in the
Appendix. These specifications detail the software running on the MCU to control all peripherals

9

and sensors, identify risks, and respond accordingly. Our design consists of 6 distinct tasks
ordered by decreasing priority:

1. Manager Task: Manages all other tasks, providing the ability to sleep unused modules,
during lost GPS signal or a stationary user.

2. Audio Task: Outputs audible collision warning messages to the cyclist through the
onboard speaker.

3. Transceiver Task: Periodically broadcasts Personal Safety Messages from the cyclist,
and also reads all incoming messages from nearby vehicles.

4. GPS Task: Reads the stream of positional data from the external GPS module.
5. Haptic Task: Periodically updates the haptic vibration motors on the cyclist's helmet to

warn of nearby vehicles and any potential collisions.
6. Core Task: Receives data from the GPS and transceivers to calculate any potential risks

to the cyclist.

These tasks and their interactions are visible in Figure 5.1.1 below.

Figure 5.1.1: Free RTOS Tasks

We used multiple forms of testing to confirm the functionality of the core software. First,

we incorporated the Ceedling test framework to compile unit and regression tests on PC. This,
along with python scripting for converting spreadsheets to test scripts, allows us to test all the
collision detection calculations using detailed spreadsheets of confirmed collision scenarios.
Secondly, we conducted extensive testing with our Java desktop Traffic Simulator to confirm the
full functionality of the prototype.

In addition to the core software, we also completed the Traffic Simulator. The previous
version of the Java desktop simulator was upgraded to use the more advanced Lightweight Java
Game Library to improve the performance and functionality of the simulator. The final version
of the Traffic Simulator allows the user to drive the bike and a selected car simultaneously using
the keyboard. The user generates cars in collision scenarios using the detailed control panel and

10

also uses the number keys on the keyboard to run simulation scripts. This allows for
pre-programming 9 different collision scenarios, creating a consistent test environment for the
full prototype. Figure 5.1.2 shows the Traffic Simulator in action.

Figure 5.1.2: Traffic Simulator Interface

5.2 Unfinished Tasks

The second iteration of the board must undergo full testing to explore incorporating it
into our working prototype demonstration. Also, the third iteration of the board needs assembly.
We have all the components and require the arrival of the boards before sending them to our
assembler. After completion of the third board, we need to perform tests and measurements on
each of the individual systems. Having this working fully would provide the optimal example of
our working prototype, however, the lead times for board manufacturing and assembly delayed
accomplishing this. Finally, best practice dictates putting together a library of the component
symbols and footprints used in the design for future usage.

The completion of the core software and traffic simulator met the goals of our schedule.
Ideally both programs would undergo more detailed unit and system tests, but the time
constraints of the project prevented us from completing such tests.

11

6 Project Management

6.1 Schedule Review

Our accomplishments meet the team goals and Gantt Chart we developed at the
beginning of the semester. We completed each step of the project within our capabilities. We had
hoped to figure out the battery charging circuit but could not find the source of the error on the
first board iteration. It provided a good learning opportunity for the next boards we developed
though. We fell behind testing the two PCBs during April due to unanticipated long lead times
for the board assemblies. It took the assembler 3 weeks rather than the anticipated 1 week to
assemble the second board. Further, the design for manufacturability (DFM) checking by the
board house (Seeed Studio) added an additional week added to the ordering of the third board.
We completed the main project goals, but would have liked to spend more time on some of the
additional features. Our final project includes all the software tasks with additional test scripts
for running checks on the core software after implementing any changes to the code.

6.2 Final Budget

Our final project spend came out to roughly $2,600 because a number of line items did
not have tax and shipping included. Table 8.3.1 of the Appendix details the entire budget spend.
Our board assembler still needs payment for assembling the second and possibly third iteration
of the board. The assembly step uses a solder machine to easily solder numerous components at
once to a board, allowing us to use smaller components in our design and eliminate errors from
difficult soldering.

6.3 Meeting Review

Throughout the course of the project our team utilized WhatsApp as our main method for
communicating with one another. This worked out well as it allowed us to have quicker
communication than email and allows different device families (Android vs iOS) to work well
together. Our group also met weekly to discuss past, current, and future work. This helped keep
everyone up to speed with the direction and progress of the project. This also gave time for our
advisor to provide technical guidance for design work and industry best practices. We also
shared all our documents on Google Drive which enabled us to work simultaneously on the same
project and review each other’s work.

12

7 Analysis of Results

7.1 Analysis of Completed Work

The second semester, our focus involved using the research, preparation, and testing from
the first semester to develop a working prototype of the entire system. This involved designing
and testing three PCBs, finishing the simulation program, writing the core software tasks, testing
the drivers for systems connections, and connecting all the protoboards together on the helmet to
develop a working model.

We successfully tested one of our stretch features, the haptic warning system. We
developed a simple motor driver circuit and selected components for the system. Our first step
involved testing the circuits on proto boards. This step helped us because we learned we needed
to include pull-down resistors since when the microcontroller powers on, its outputs are in an
undefined state which caused random motor spasms. We then implemented the circuits on our
second and third PCBs for use in our final product.

After testing our first PCB, we discovered a few errors on the schematic and fixed those.
We also learned the importance of isolating the individual systems to optimize our ability to test
different parts of the board without disturbing the other parts. The battery charging circuit on this
board added a complexity that fell out of the scope of the project. Although we would surely
revisit the design when developing a true consumer product, it introduced too much variability
and uncertainty associated with testing it for our prototype.

The second PCB we developed included the cell balancer, two buck converters, and
haptic motor drivers. Rather than soldering all the components on ourselves, we chose to send
them to a board assembler with the hopes of expediting the soldering process, eliminating any
soldering errors, and using smaller component package sizes. Further, we manufactured these
boards cheaply since we did not need laser vias, narrow trace margins, or more than 2 layers.

The third iteration of the PCB involves the entire system incorporated on to a single
board. Developing this board contributes to the development of a final product as it gives an
estimate for the size, weight, and cost of the product. We developed a full bill of materials
(BOM) for the final product, located in Section 8.4 of the Appendix, which allowed us to
estimate production costs for the product in quantities of 1, 10, and 1,000. See Table 7.1.1 below
for the estimated production costs for the product. As a part of the design of this board we
isolated each of the systems to enable individual testing and current draw measurements. This
feature allows us to determine the proper sizing of the battery/power supply system for our
application. This board includes many advanced layout techniques including buck converters,
fast edges, antennas, large current spikes and RF traces that could prove difficult to test and get
working properly. The assembler will also put together this board due to the high quantity of
small components in a confined space.

13

Table 7.1.1: Estimated Production Costs

Quantity Cost

1 $292.00

100 $165.00

1000 $122.00

The core software running on our MCU on the helmet includes all the components we

had hoped to implement within our project scope. Using the FreeRTOS kernel, we developed
numerous tasks to simultaneously interact with all the peripheral chips while tying all the
associated data together with the core collision and threat detection logic.

We began by programming the software-level interface to each of the connected
hardware components one at a time including the GPS, transceiver, audio, and haptic drivers. We
carefully engineered the code so that each component could undergo individual testing to verify
its functionality before integrating the various pieces into one system. After the testing and
verification of the proper functionality of each system, we implemented the core software
structures for holding and transferring the information.

Finally, we added a task to manipulate all this data and route it accordingly. This process
began by working through equations to detect collisions and near-collisions between vehicles
given their positional and movement data. We ensured that our model would detect both linear
collisions and vehicle turning collisions. After a significant amount of performance testing, we
settled on an algorithm that detects these scenarios, and offers projected data about the vehicles
at the time of the incident. Once successfully implementing this equation in the code, we used
the information from this algorithm to assess the severity of threats from all the nearby vehicles
on the road. After determining the threat levels of the collisions, the haptic and audio tasks
simply had to understand the most pressing dangers so that they could convey this information to
the cyclist. This collision detection and alert system serves as a great example of how our
prototype could be expanded and refined to become a reliable safety product.

The traffic simulator desktop program originally began as a way for us to safely test
dangerous collision scenarios without having to actually take to the roads with untested
hardware. We implemented a basic interface in which a bike could travel with a specified speed
and direction, and cars could generate such that they would collide with or closely encounter the
bike. We then coded a serial interface between the simulator and our data relay so that the virtual
world within the simulator could transfer wirelessly to the actual smart helmet just as if the
authentic data came from nearby cars.

After some basic testing with this simulator, and considering the extent of our collision
detection algorithms, we determined improvements for the traffic simulator. We began working

14

on a second iteration of the program that included a much smoother interface to control the
simulation and visualize the world. This version also implemented keyboard controls that enable
a user to drive bikes or cars around to achieve whatever test scenarios they might want. Finally,
this version added the ability to run predefined scripts so that demonstrations could quickly and
reliably show off a few prepared scenarios. This program improved our software testing and
debugging phase and serves as a valuable tool when demonstrating the functionality of our
prototype.

7.3 Analysis of Incomplete Work

Although we successfully put together a helmet with the development boards, we still
have one more step to the final hardware product. The power supply system from the first
iteration of the board never received 100% verification due to a few mistakes in the design that
made it difficult to properly test. Therefore, the second iteration of the board with the power
supply system and haptic drivers must undergo full testing to verify the proper design of the buck
converters. This testing process involves using a power supply to power each of the rails
individually and verify their outputs. After testing with a power supply, Lithium Ion batteries for
the final design will power the system. Having completed the battery test, we could then move
on to including the cell balancer circuit in the design and testing its functionality by unevenly
charging the two series cells and measuring the output current of the cell balancer.

We already verified the haptic motor drivers, thus the completion of the power supply
testing would allow us to replace the off-the-shelf regulator and batteries on our current helmet
with the custom board. This would better replicate the final design and reduce the amount of
hardware on the helmet.

We also need to run through a full system test of the full system PCB (third iteration). We
use jumpers for isolation between each of the systems so that we can test each system’s
functionality separate from the others. After verifying the individual functionality we could
move on to testing the entire system by running the core software on the hardware. We would
first do this with a power supply before using the batteries because we do not have official
measurements for the power consumption of the individual systems as used by our product. The
jumper configuration for each system allows us to break the circuit and make current
measurements for each of the systems. This feature aids the development of the prototype
because it allows us to evaluate the battery selection for this application and determine how we
can properly size the components of the power supply system for optimal functionality.

The remaining work on the core software involves running more strenuous tests to ensure
proper operation for an extended period of time. More in-depth trials for different scenarios and
adjustments to the threat-detection algorithm could also benefit the overall performance of the
unit. We also looked into implementing bluetooth communications for the device, but did not
move forward with this optional feature due to time restraints and the complexity of the required
code for our use case.

15

The traffic simulator meets the standards we envisioned for it. The finalized code for the
simulator just needs to undergo further testing. A few final bugs need resolution in the next
couple of weeks and some endurance testing performed to ensure no bugs present themselves
when the program runs for extended periods of time. Finally, the script files for predefined
scenarios require development and refinement for an effective and impressive system
demonstration.

7.3 Final Product Improvements and Steps

During this year we achieved our main goal of developing a fully functioning prototype
of our design which involved testing and verifying the functionality of each essential system. We
also completed the simulation program for testing and displaying the functioning product, as well
as 3 PCB designs which serve as important test points for a final product. Improving our design
would involve upgrading the hardware as well as working on software additions.

After testing the hardware and determining any changes needed for proper functionality,
we would work on optimizing the layout of the board to reduce its size. We would also replace
all the system jumper connections with 0402, 0 Ohm resistors. Our current and power
measurements on the third board would also allow us to determine the proper sizing of the
batteries, traces, and other power related components. After completing this step we would work
on a 3D printed enclosure that could attach to the helmet and protect the electronics. Further, a
true consumer product would require emissions testing for any RF radiation. We would also
revisit the battery charging circuit so that users would not have to open the case and remove the
batteries to charge them.

Another upgrade to the system will come after the release of the V2X chips from NXP
and Qualcomm, requiring us to tweak some of the designs to work on the different frequency
band and with the new chips.

The next software step involves developing an app for interfacing with the helmet over
Bluetooth. The third PCB iteration includes a Bluetooth antenna, so we could test this
functionality with the current boards. The app interface would allow for battery monitoring, and
haptic and audio sensitivity adjustments. We could also use it for field testing rather than using
the simulator that currently runs on laptops and desktops only.

7.4 Societal Impact

The driving force behind the idea for this project focused on the concern of incorporating
cyclists into the autonomous vehicle and smart city ecosystem. Since most of the technology that
enables this product to function at its full capability has not gone to market yet, it will not have
an immediate societal impact. As autonomous and semi-autonomous vehicles continue to roll out
though, the need for the general public to safely interact with them will increase. Cyclists will
need the Smart Helmet because it allows them to ride on the road safely with cars. It will also
improve vehicle safety, as the extra data from the cyclist’s helmet allows for vehicles and drivers

16

to make smarter decisions when interacting with cyclists on the road. Further, smart city systems
equipped with the proper receiver and transmitter technology can communicate with cyclists too.
This product paves the way for enhancing cyclist safety and improving road conditions for all
road users.

8 Appendices

8.1 Abbreviations

BGA - Ball Grid Array
BOM - Bill of Materials
DRC - Design Rule Check
DSRC - Dedicated Short Range Communication
ENIG - Electroless Nickel Immersion Gold
GPS - Global Positioning System
GUI - Graphical User Interface
IC - Integrated Circuit
IMU - Inertial Measurement Unit
LED - Light Emitting Diode
MCU - Microcontroller
PCB - Printed Circuit Board
RTOS - Real Time Operating System
V2X - Vehicle to Everything

8.2 Detailed Project Requirements

Table 8.2.1: Major Features

Feature Description

GPS Connection A GPS chip and antenna receive satellite data to calculate speed,
direction, and location of the biker. The system must receive this GPS
data at ​ ​least 5 times a second. The position should be accurate to
within 3 meters, the speed to within 0.5 m/s, and the heading to within
5 degrees.

V2X Communication The system must transmit Basic Safety Messages at 10 Hz at all
times. These messages must contain essential information about the
bicycle's position and actions. The system must also receive all V2X
messages transmitted from other units within 200 meters line of sight

17

of biker and 90% of all messages within 100 meters not line of sight.
The message delay must be below 50ms.

Risk Assessment The product determines different levels of potential risks from the
received V2X data.

Rechargeable Battery The product must run consistently for at least 2 hours off of a full
charge making it usable for multiple or long bike rides.

Traffic Simulation The Traffic Simulation program simulates cars to meter-accurate GPS
positions around the biker in order to be able to properly test the
product. It sends the simulated V2X data to the bike at 10 Hz for each
simulated vehicle.

Audio Warnings Audio messages must warn the biker of nearby dangers early with
time to help the biker - more specifically, with at least 2 seconds
before actual danger. False alarms are kept to a minimum and are not
dangerous.

Table 8.2.2: Project “Stretch” Features

Feature Description

Haptic Feedback Haptic motors located within the helmet notify cyclist of nearby
vehicles. This involves experiments with different patterns for
conveying direction and speed of vehicles.

Smartphone Display A bluetooth connected smartphone mounted on the bikers’
handlebars presents visual information about nearby dangers. The
app could also allows users to configure settings for the prototype
wirelessly.

Custom PCB Allows for a more compact unit to easily mount on a helmet and
demonstrate the helmet as a feasible prototype.

Visibility Lights LEDs on the module provide visibility for other vehicles, perhaps
based on time of day or ambient light level, and a brake light
triggered by deceleration.

Module Enclosure A well designed enclosure protects electronics from outside noise and
provides protection.

18

8.3 Total Budget Spend

Table 8.3.1: Budget Spend from Project Start

Vendor/Order Description Cost (no tax/shipping)

Digikey Order 1 Power PCB passive components, IC’s,
and batteries

$145.32

Mouser Order 1 Power PCB passive component $11.25

Amazon Order 1 Soldering tools and test equipment $284.37

Texas Instruments Order
1

Power PCB IC’s $26.58

Adafruit Order 1 Transceivers, audio boards, IMU’s, and
haptic motors

$160.20

mRobotics Order 1 GPS boards $150.98

SAE Order 1 DSRC Protocol $78.00

Sparkfun Order 1 Antennae and test MCU’s $99.45

Adafruit Order 2 Power Supply/misc $171.45

Amazon Order 3 Helmet Supplies $39.91

Amazon Order 3 Speakers $28.29

Sparkfun Order 2 IMU $34.95

Sparkfun Order 3 Audio/Radios $113.96

Seeed Studio Order 2 Power Supply/Haptic Driver PCB $51.04

Digikey Order 2 Helmet Test $7.62

ChipStop Order 1 Apollo2 Blue EVB $212.00

Digikey Order 3 Board 2/3 Components $167.93

Digikey Order 4 Board 3 Components $97.67

VLSI Solutions Audio Processing SoC $116.23

Mouser Order 2 Board 3 Components $25.97

19

mRobotics Order 2 GPS Connectors $21.60

Seeed Studio Order 3 Full System PCB $453.09

Amazon Order 3 Helmet and Glue Gun $33.15

SparkFun Order 4 Audio Amplifiers $31.10

Total Budget Spend: $2562.11

20

8.4 PCB Bill of Materials
Attached next.

1

Manufacturer Part Number Manufacturer Digi-Key Part Number Reference Designator Quantity Unit Price Extended Price
1048 Keystone Electronics 36-1048-ND BH1 1 ($ 4.43) ($ 4.43)
10118193-0001LF Amphenol ICC (FCI) 609-4616-1-ND J1 1 ($ 0.45) ($ 0.45)
ABS06-107-32.768KHZ-T Abracon LLC 535-12373-1-ND X1 1 ($ 0.84) ($ 0.84)
AC0402FR-078K2L Yageo YAG3514CT-ND R31, R32 2 ($ 0.10) ($ 0.20)
AMCA31-2R450G-S1F-T3 Abracon LLC 535-14095-1-ND A1 1 ($ 0.48) ($ 0.48)
BLM15HG601SN1D Murata Electronics North America 490-3998-1-ND L3 1 ($ 0.19) ($ 0.19)
BM06B-GHS-TBT(LF)(SN)(N) JST Sales America Inc. 455-1582-1-ND U$3 1 ($ 0.56) ($ 0.56)
BQ29209DRBR Texas Instruments 296-27677-1-ND U1 1 ($ 0.90) ($ 0.90)
CC0402JRNPO9BN101 Yageo 311-1024-1-ND C15, C18, C22, C23 4 ($ 0.10) ($ 0.40)
CC0402KRX7R9BB102 Yageo 311-1036-1-ND C43 1 ($ 0.10) ($ 0.10)
CGA2B2X7R1E223K050BA TDK Corporation 445-5609-1-ND C7, C8 2 ($ 0.10) ($ 0.20)
CGA2B3X7R1H473K050BB TDK Corporation 445-6897-1-ND C5, C6 2 ($ 0.13) ($ 0.26)
CL05A105KP5NNNC Samsung Electro-Mechanics 1276-1076-1-ND C9, C11, C14, C17, C33, C47, C48, C56, C59, C76, C77, C81 12 ($ 0.04) ($ 0.49)
CL05A224KP5NNNC Samsung Electro-Mechanics 1276-1049-1-ND C10, C12 2 ($ 0.10) ($ 0.20)
CL05A334KP5NNNC Samsung Electro-Mechanics 1276-6665-1-ND C4 1 ($ 0.13) ($ 0.13)
CL05A474KP5NNNC Samsung Electro-Mechanics 1276-1173-1-ND C49 1 ($ 0.10) ($ 0.10)
CL05B103KO5NNNC Samsung Electro-Mechanics 1276-1051-1-ND C34 1 ($ 0.10) ($ 0.10)
CL05B104KO5NNNC Samsung Electro-Mechanics 1276-1001-1-ND C1, C2, C3, C29, C30, C32, C37, C40, C44, C45, C72, C74, C79 13 ($ 0.02) ($ 0.29)
CL05C390JB5NNNC Samsung Electro-Mechanics 1276-1016-1-ND C19, C20, C21, C28, C31, C36, C39, C63, C66, C67, C71, C75, C80, C8214 ($ 0.03) ($ 0.35)
CL31A476MPHNNNE Samsung Electro-Mechanics 1276-3063-1-ND C24, C25, C26, C27 4 ($ 0.75) ($ 3.00)
CL31B226MPHNNNE Samsung Electro-Mechanics 1276-3148-1-ND C13, C16 2 ($ 0.59) ($ 1.18)
COM-13909 SparkFun Electronics 1568-1394-ND U5 1 ($ 5.95) ($ 5.95)
CRGCQ0402F270R TE Connectivity Passive Product A129620CT-ND R8 1 ($ 0.10) ($ 0.10)
CRGH0805F1M0 TE Connectivity Passive Product A126423CT-ND R37 1 ($ 0.10) ($ 0.10)
CSTNE12M0GH5C000R0 Murata Electronics North America 490-17946-1-ND Y1 1 ($ 0.40) ($ 0.40)
EEE-1EA101XP Panasonic Electronic Components PCE3898CT-ND C64 1 ($ 0.47) ($ 0.47)
EN2342QI Intel 544-2948-1-ND U2, U3 2 ($ 10.44) ($ 20.88)
ERA-2AED101X Panasonic Electronic Components P100DECT-ND R9, R12, R49, R50 4 ($ 0.22) ($ 0.88)
ERA-2AED102X Panasonic Electronic Components P1.0KDECT-ND R46 1 ($ 0.22) ($ 0.22)
ERA-2AED103X Panasonic Electronic Components P10KDECT-ND R21, R22, R47, R48 4 ($ 0.22) ($ 0.88)
ERA-2AED104X Panasonic Electronic Components P100KDECT-ND R3, R4, R38, R39, R41, R43, R44, R45, R52, R53 10 ($ 0.19) ($ 1.88)
ERA-2AED753X Panasonic Electronic Components P75KDECT-ND R27 1 ($ 0.22) ($ 0.22)
ERJ-2GE0R00X Panasonic Electronic Components P0.0JCT-ND F1, F2, R36, R60 4 ($ 0.10) ($ 0.40)
ERJ-2RKF1072X Panasonic Electronic Components P10.7KLCT-ND R28 1 ($ 0.10) ($ 0.10)

2

ERJ-2RKF1690X Panasonic Electronic Components P169LCT-ND R7 1 ($ 0.10) ($ 0.10)
ERJ-2RKF2201X Panasonic Electronic Components P2.20KLCT-ND R40, R42 2 ($ 0.10) ($ 0.20)
ERJ-2RKF2202X Panasonic Electronic Components P22.0KLCT-ND R25 1 ($ 0.10) ($ 0.10)
ERJ-2RKF2872X Panasonic Electronic Components P28.7KLCT-ND R30 1 ($ 0.10) ($ 0.10)
ERJ-2RKF3742X Panasonic Electronic Components P37.4KLCT-ND R23 1 ($ 0.10) ($ 0.10)
ERJ-2RKF4021X Panasonic Electronic Components P4.02KLCT-ND R19, R20 2 ($ 0.10) ($ 0.20)
ERJ-2RKF4700X Panasonic Electronic Components P470LCT-ND R56, R59 2 ($ 0.10) ($ 0.20)
ERJ-2RKF4751X Panasonic Electronic Components P4.75KLCT-ND R33, R34, R35 3 ($ 0.10) ($ 0.30)
ERJ-2RKF6192X Panasonic Electronic Components P61.9KLCT-ND R26 1 ($ 0.10) ($ 0.10)
ERJ-2RKF7322X Panasonic Electronic Components P73.2KLCT-ND R24 1 ($ 0.10) ($ 0.10)
ERJ-2RKF9762X Panasonic Electronic Components P97.6KLCT-ND R29 1 ($ 0.10) ($ 0.10)
ESR10EZPF30R0 Rohm Semiconductor RHM30.0AECT-ND R5, R6, R13, R14, R17, R18 6 ($ 0.17) ($ 1.02)
FTSH-105-01-F-DV-K-P-TR Samtec Inc. SAM13159CT-ND U2 1 ($ 3.88) ($ 3.88)
GCM155R71H472KA37D Murata Electronics North America 490-4915-1-ND C65, C69 2 ($ 0.10) ($ 0.20)
GJM1555C1H1R2BB01D Murata Electronics North America 490-8085-1-ND C53, C54, C55 3 ($ 0.19) ($ 0.57)
GJM1555C1H3R0BB01D Murata Electronics North America 490-8095-1-ND C41, C42 2 ($ 0.19) ($ 0.38)
GRJ155R60J106ME11D Murata Electronics North America 490-13211-1-ND C35, C38, C57, C58, C60, C62, C68, C70, C73, C78 10 ($ 0.17) ($ 1.66)
GRM155R61A225KE95D Murata Electronics North America 490-10451-1-ND C50, C52 2 ($ 0.13) ($ 0.26)
GRT188R61E106ME13D Murata Electronics North America 490-12323-1-ND C46, C51 2 ($ 0.51) ($ 1.02)
L-07C3N3SV6T Johanson Technology Inc. 712-1416-1-ND L5, L6 2 ($ 0.10) ($ 0.20)
LM4853MM/NOPB Texas Instruments LM4853MM/NOPBCT-ND U10 1 ($ 1.79) ($ 1.79)
LQM18PN4R7MFRL Murata Electronics North America 490-12065-1-ND L4 1 ($ 0.42) ($ 0.42)
LT1962EMS8-5#TRPBF Linear Technology/Analog Devices LT1962EMS8-5#TRPBFCT-ND U4 1 ($ 4.25) ($ 4.25)
M20-9990246 Harwin Inc. 952-2262-ND JP1, JP2, JP3, JP4, JP5, JP6, JP7, JP8, JP9, JP10, JP11, JP12, JP13 14 ($ 0.10) ($ 1.38)
MBR120ESFT3G ON Semiconductor MBR120ESFT3GOSCT-ND D1, D2, D3, D4, D5, D6, D8, D9 8 ($ 0.40) ($ 3.20)
MGSF1N02LT1G ON Semiconductor MGSF1N02LT1GOSCT-ND Q1, Q2, Q3, Q4, Q5, Q6 6 ($ 0.56) ($ 3.36)
MM8430-2610RA1 Murata Electronics North America 490-4980-1-ND U7 1 ($ 0.54) ($ 0.54)
MX25L1606EM1I-12G Macronix 1092-1122-ND U8 1 ($ 0.59) ($ 0.59)
PRT-12895 SparkFun Electronics 1568-1488-ND Batteries 2 ($ 5.95) ($ 11.90)
PTS645SM43SMTR92 LFS C&K CKN9112DKR-ND S1 1 ($ 7.17) ($ 7.17)
RT0402BRD0720KL Yageo YAG1388CT-ND R1, R2, R10, R11, R15, R16 6 ($ 0.38) ($ 2.28)
SRN2010TA-2R2M Bourns Inc. SRN2010TA-2R2MCT-ND L1, L2 2 ($ 0.39) ($ 0.78)
NA Amazon NA Helmet 1 ($ 16.99) ($ 16.99)
a15071300ux0251 Uxcell NA JP12 1 ($ 3.62) ($ 3.62)
PCB Seeed Fusion NA PCB 1 ($ 58.47) ($ 58.47)

3

MRO-GPS004-MR mRobotics NA GPS 1 ($ 69.90) ($ 69.90)
652-PTR902-1015FA203 Bourns 652-PTR902-1015FA203 POT1 1 ($ 3.07) ($ 3.07)

Ambiq Micro NA U6 1 ($ 7.47) ($ 7.47)
VS1000D-L VLSI Solutions VS1000D-L U9 1 ($ 18.00) ($ 18.00)
1865 Adafruit 1865 X1 1 ($ 2.50) ($ 2.50)
1201 Adafruit NA H1, H2, H3, H4, H5, H6 1 ($ 11.70) ($ 11.70)
CX2016DB48000C0WPLA2 Kyocera 581-CX2016DB48CWPLA2 X3 1 ($ 0.90) ($ 0.90)
MRC0206 mRobotics GPS Connection 1 ($ 3.35) ($ 3.35)

21

8.5 Core Software Specifications

Attached next.

 GONZAGA UNIVERSITY

School of Engineering and Applied Science

Center for Engineering Design and Entrepreneurship

Core Software Specifications
ENSC 02 - Smart Helmet

Damon George & Robert Brajcich

Revision 2
Last Update: 4/15/2018

1

TABLE OF CONTENTS

Introduction 3

RTOS Tasks 3
Manager Task 3
Audio Task 3
Transceiver Task 3
GPS Task 4
Haptic Task 5
Core Task 5

Interrupts 6
UART0 ISR 6
Audio FX Pin ISR 6
SPI0 ISR 6
Transceiver Pin ISR 6

Data Structures 7
Global GPS Data 7
Global IMU Data 7
Vehicle 7
Vehicle List 7
Bike 7
Collision Info 7
Personal Safety Message 8
Audio Message Queue 8
Haptic Threat 8
Top Haptic Threats 8

Synchronization Variables 9
Mutexes 9

Global GPS Mutex 9
Global IMU Mutex 9
Global Haptic Threats Mutex 9

Semaphores 9
SPI0 Binary Semaphore 9

Task Notifications 9
GPS Notification 9
Transceiver Notification 9
Audio Notification 10

2

Timers 10
Transceiver Software Timer 10

3

Introduction
This document details the layout, design, and functionality of the core software for the ENSC 02
Senior Design Project - Bike Safety Smart Sensor. This is the software that will run on the
Apollo2 Blue MCU on the Smart Helmet. This document will be updated as software changes
are made.

RTOS Tasks
In order of decreasing priority.

Manager Task
As the highest priority task, this is responsible for managing all other RTOS tasks. Namely, this
task handles starting and stopping different tasks. This task receives messages in the Manager
Queue, and then starts or sleeps task using the Task Management Event Group. This allows
the manager task to sleep certain modules when not in use. For example, when the GPS
detects a lack of movement for a certain period of time, all other tasks are slept until the helmet
starts moving against.

Audio Task
As the highest priority of the managed tasks, this is responsible for determining and sending
commands to the Audio FX board to play different audio files. This task will RTOS block on the
Audio Message Queue that is filled by the core task. When a collision message is added to the
queue, this task will calculate the appropriate audio message, turn on the audio amplifier, and
send the short play command over UART1 to the Audio FX board. Then it will block until the
rising edge pin interrupt from the Audio FX board, at which point it will turn off the amplifier and
return to blocking on the message queue again.

Transceiver Task
This task will handle all the communications via the transceiver. It will be accomplished by one
task rather than 2 due to the inability of the transceiver to buffer send and receive messages
simultaneously. It will consist of a loop that begins with a statement that performs an RTOS
block waiting for either a task notification from the transceiver isr (see below) or a periodic timer
(which notifies every ~10Hz To send out a new Basic Safety Message, possibly randomized
slightly). It then performs relevant functions to interact with the transceiver on a low level to read
or write messages. The main pseudocode of the module is shown below (2 possible versions
shown):

4

Block on periodic timer AND transceiver interrupt notification

if periodic timer notification:

if !sending:

set transceiver mode to idle

sending = true;

load message into transceiver FIFO

set transceiver into TX mode

if ISR notification:

read interrupt flags register

if TX done flag and sending:

clear interrupt flags register

set transceiver into RX mode

sending = false

else if RX done flag and !sending:

read message from FIFO

clear interrupt flags register

else (in case RX interrupt came after 'sending' set to true)

clear interrupt flags register (only RX bit?)

The ISR discussed above is simply tied to the pin G0 on the transceiver module. When an
interrupt occurs and calls the ISR, it will send a task notification to the transceiver task, which
can then handle the interrupt accordingly in due time.

The SPI communication layer for this module will have a custom implementation in order to be
able to initiate a transaction, then perform an RTOS block until the dedicated hardware finishes
the transaction. The SPI transfer function will follow a flow as shown below:

spi_transfer(...)

initiate hardware spi

take binary semaphore (waiting for ISR to release it)

And the onboard SPI transaction complete interrupt will be tied to an ISR that releases the
spi_transfer function by giving the semaphore.

GPS Task
The GPS task is focused on receiving and parsing the serial data stream from the NEO-M8N
GPS Module. The main loop will wait on a notification from the UART0 ISR. When it receives a
notification, it will parse the newly received sentence using a third party library. If the new data is
valid, this task will copy the new data to the Global GPS Data Buffer, which requires taking the
mutex for that buffer. Both the Notification and the Mutex will be RTOS Blocking. If either of
these timeouts, errors will occur.

5

Furthermore, every couple minutes this task will use the timestamp from the GPS data to update
the MCU's real time clock (RTC).

Haptic Task
This task periodically (~10 Hz) reads through the Nearby Vehicle Vectors to update the PWM
outputs for the haptic motors according to the top threats from the list. Accessing the List
requires holding the associated mutex.

Core Task
The core task will primarily be focused on the ongoing gathering of data from the various other
modules, processing this data to assess risks and generate notifications, and performing any
other ongoing background tasks. The primary loop of the core task will consist of the following
logic:

if new_gps_data flag set:

lock gps_data_mutex

create copy of GPS data for core task to use

clear new_gps_data flag

unlock gps_data_mutex

if new_imu_data flag set:

lock imu_data_mutex

create copy of IMU data for core task to use

clear new_imu_data flag

unlock imu_data_mutex

for each new packet in bsm_queue:

if new packet isn't too old:

if new packet is simulated bike data:

update bike data and timestamp

else:

update vehicle data and timestamp using linear search through the

vehicle_list

get next vehicle in vehicle_list:

if next vehicle is null:

//we've reached the end of the linked list, start over

current vehicle = head of vehicle_list

else:

if the vehicle's timestamp is old:

remove vehicle

else:

calculate risk for the vehicle

update top audio and haptic threats if necessary

6

The top audio threat is tracked by the core task, and top 3 haptic threats are tracked as well. If
the top audio threat is above a certain threshold, the collision data will be sent to the Audio
Message Queue. The top three haptic threats (above a certain threshold) will be constantly read
and output by the haptic task.

Interrupts
In order of decreasing priority.

UART0 ISR
This interrupt is triggered by the hardware UART0 interface used by the GPS task. This is the
highest priority interrupt because otherwise the UART0 hardware FIFO could easily fill up and
begin losing data, which would prevent the device from getting accurate GPS data.

This ISR first checks the UART0 interrupt status register to determine the cause of the interrupt.
If the cause is a FIFO threshold, then this will copy the data from the hardware FIFO to the
UART0 memory buffer that was created in the initialization of the GPS task. As this ISR copies
each character to memory, it will look for end of line characters. If one is found, this ISR will
notify the GPS Task so that the GPS Task can move to the Ready state and parse the new
data. This ISR will finish by calling portYieldFromISR().

Audio FX Pin ISR
This ISR is triggered by the ACT pin on the Sound FX board, which goes low when audio is
being played. On the rising edge, this interrupt will give a Binary Semaphore to the Audio Task
to acknowledge that the audio file successfully finished playing.

SPI0 ISR
This interrupt is triggered by the hardware SPI0 interface which is used by the Transceiver Task.
This ISR will first check the cause of the interrupt. If this is a FIFO threshold interrupt, then this
ISR will handle filling/emptying the FIFO from/into the associated memory buffers created in the
initialization. If this is a transaction complete ISR, then it will give the Binary Semaphore to the
Transceiver Task to signal that the SPI transaction is finished.

Transceiver Pin ISR
This interrupt is trigger by the interrupt pin on the LoRa chip. This ISR will simply notify the
Transceiver Task that this interrupt has occurred.

7

Data Structures

Global GPS Data
The GPS Data will be stored in global struct requiring a mutex to access. This data includes the
following:

● Longitude
● Latitude
● Speed
● Course
● Timestamp
● Fix Status
● Horizontal Dilution of Precision.

Global IMU Data
The IMU Fusion data will also be stored in a global struct requiring a mutex to access. This data
includes:

● 3 Axis of Acceleration
● Euler Vectors

Vehicle
A struct used by the core task to hold data about a single vehicle, including id, location, speed,
etc, as well as a timestamp holding the time of the most recent update to the data.

Vehicle List
The list of current vehicles around the biker, local to the Core Task. This is a Linked List which is
ordered by Vehicle ID. This will be traversed using a linear search on vehicle ID.

Bike
The current info about the biker - local to the Core Task. This holds the biker's GPS and IMU
data, copied from the corresponding global data so as to provide easier access for the Core
Task.

Collision Info
This is a struct used across the core software to hold the following information regarding a
calculated collision scenario for the biker:

● The current location of the car around the biker
● The location of the car right before the collision
● The distance between the car and biker at the collision

8

● The time until the collision
● The relative speed of the car to the biker at the collision
● The relative angle of the car to the biker at the collision

Personal Safety Message
A byte array holding all the data contained in a DSRC personal safety message. Data is
accessible through functions like “PSM_ID PSM_GetId(PersonalSafetyMessage *bsm)” or “void
PSM_SetId(PersonalSafetyMessage *bsm, PSM_ID id)”. The data includes:

● ID - 4 byte random identifier.
● timestamp - 2 byte integer from 0 to 60999 referring to milliseconds within current

minute.
● type - 1 byte representing type of user (value of 2 for cyclist).
● message count - 1 byte from 0 - 127.
● Latitude - signed 4 bytes representing 0.1 microdegrees from -90 to 90 degrees.

900000001 represents unavailable.
● Longitude - signed 4 bytes representing 0.1 microdegrees from -179.9 to 180 degrees.

1800000001 represents unavailable.
● Elevation - integer from -4096 to 61439 for decimeters.
● Positional Accuracy - 1 byte accuracy in 5 cm increments, for each 2 axis.
● Speed - 2 bytes from 0 to 8190 in units of 0.2m/s with 8191 representing N/A.
● Heading - 2 bytes from 0 to 28799 in units of 0.0125 degrees with 28800 being N/A
● Acceleration - 2 axis of acceleration. Each is 2 signed bytes from -2000 to 2000 in units

of 0.01m/s^2 with 2001 representing N/A..
● Vertical Acceleration - 1 byte from -127 to 127 in units of 0.02 G.
● Yaw - 2 signed bytes in units of 0.01 degrees/sec.

Audio Message Queue
An RTOS Queue holding collision info to be turned into audio messages and played to the user
by the Audio Task. The Audio Task blocks on this Queue. This Queue can hold up to 5
collisions to warn the user of.

Haptic Threat
A simple struct holding the id of a vehicle, its distance and angle from the biker, and its haptic
threat level.

Top Haptic Threats
A list of the top 3 haptic threats as determined by the core task. This list is synchronized by the
Global Haptic Threats Mutex and is read by the Haptic Task to determine the output of the
vibration motors on the Smart Helmet.

9

Synchronization Variables
This section details the objects used to synchronize the RTOS tasks. Mutexes are used to
protect data reads or writes to memory from being interrupted by another task looking to read or
write the same data. Binary Semaphores are used by tasks to wait for another task or interrupt
to complete some operation. Notifications are a simple way for tasks or interrupts to notify
another task that an event has occurred.

Mutexes

Global GPS Mutex
The Mutex required to read or write the Global GPS Data.

Global IMU Mutex
The Mutex required to read or write the Global IMU Data.

Global Haptic Threats Mutex
The Mutex required to read or write the Top Haptic Threats list.

Semaphores

SPI0 Binary Semaphore
The semaphore used by the SPI0 ISR and the Transceiver Task. The Transceiver Task blocks
on this semaphore after starting an asynchronous SPI0 transaction. When the transaction
finishes, the SPI0 ISR will return the semaphore, unblocking the Transceiver Task.

Task Notifications

GPS Notification
The UART0 ISR notifies the GPS Task when it encounters a new sentence from the serial data
stream from the GPS Module. This will simply increment the GPS Task's Notification Variable.

Transceiver Notification
Both the Transceiver Pin ISR and the Transceiver Timer can notify the Transceiver Task. The
Transceiver Pin ISR notifies the Transceiver Task every time it runs by setting bit 0 of the
Transceiver Task's Notification Variable. The Transceiver Timer notifies the Transceiver Task at
10 Hz by setting bit 1 of the Transceiver Task's Notification Variable.

10

Audio Notification
The Audio FX Pin ISR notifies the Audio Task every time it runs by incrementing the Audio
Task's Notification Variable.

Timers

Transceiver Software Timer
The 10 Hz RTOS timer used to notify the transceiver when a Safety Message needs to be
transmitted. Random milliseconds are added to this timer to prevent the transmission of safety
messages from constantly preventing the reception of another safety message being sent at the
same time and frequency.

