backend.data.AnalysisData¶
- class backend.data.AnalysisData¶
- __init__()¶
Initialize self. See help(type(self)) for accurate signature.
- get_params()¶
Returns dict of this object’s attributes, excluding any attributes in the excluded_params list
- get_settings_params()¶
Returns only the settings-related params; not the data
- update_from_params(params)¶
Update this object’s attributes using the params dict. Any attributes in the excluded_params list will not be updated
- slice(start=None, end=None, bools=None)¶
Just returns a deepcopy since there is no way to slice results yet.
- clear_data()¶
Clear the evaluated test results
- static concatenate(*data_objects)¶
Concatenate the data from the given objects into one. The settings from the first data object are used.
- print_test_results(printer, print_data=True)¶
Prints the current test results to the given printer using the Result class’s print method
- calc_results(output_data: backend.data.output_data.OutputData, trials, timestep: float, relax_pos=0, printer=<function empty_func>)¶
Calculates & returns the dictionary of test results for output_data using self.results
- eval_dual_results(output_data: backend.data.output_data.OutputData)¶
- eval_results(output_data, relax_pos=None, timestep=0.033, printer=<function empty_func>, stop_task_event=<backend.utils.DummyClass object>)¶
Calculate the test results using either the provided data or the current test data and the results specified in self.analysis_data.results
- cross_validation(output_data, train_callback, test_callback, timestep=0.033, relax_pos=0, holdout_first=False, holdout_last=False, printer=<function empty_func>, stop_task_event=<backend.utils.DummyClass object>)¶
Return list of AnalysisData objects for each fold of cross validation
- find_first_result(res_type: common.enums.ResultType)¶