backend.data.FeatureData¶
- class backend.data.FeatureData¶
- __init__()¶
Initialize self. See help(type(self)) for accurate signature.
- get_settings_params()¶
Returns only the settings-related params; not the data
- update_from_params(params: dict)¶
Update this object’s attributes using the params dict. Any attributes in the excluded_params list will not be updated
- clear_settings()¶
- num_features_without_histories(n_chan)¶
Calculates the number of features currently being generated, without feature and state histories
- num_features(n_chan, n_dof)¶
Calculates the number of features currently being generated, with feature and state histories
- clear_data()¶
Clear the data while leaving settings unchanged
- static concatenate(*data_objects)¶
Simply returns the first feature object
- slice(start=None, end=None, bools=None)¶
Simply returns a copy of self
- update_histories(output_data: backend.data.output_data.OutputData, n_chan: int)¶
Recomputes State and Feature History of output_data.z_f
- update_current_state_history(output_data: backend.data.output_data.OutputData, idx: int, n_chan=None, n_feat=None)¶
Updates the state history of output_data.z_f at the current index: idx Either n_chan or n_feat (without histories) is required
- update_current_feature_history(output_data: backend.data.output_data.OutputData, idx: int, n_chan=None, n_feat=None)¶
Updates the feature history of output_data.z_f at the current index: idx Either n_chan or n_feat (without histories) is required
- calc_new_features(filtered_buffer: numpy.ndarray, output_data: backend.data.output_data.OutputData, output_idx: int, decoder=None, feature_timing_history=None, decoder_timing_history=None)¶
Calculate the features using filtered_buffer, and insert the features and their histories at the output_idx of output_data.
If decoder is provided, it will be used to compute the state history.
- train_features(raw_data, output_data)¶
Train any trainable features on the raw data and their labels